Home
Class 12
MATHS
tan^(-1)((5)/(13))+cos^(-1)((3)/(5))=...

`tan^(-1)((5)/(13))+cos^(-1)((3)/(5))=`

A

`tan^(-1)((67)/(19))`

B

`tan^(-1)((1)/(59))`

C

`tan^(-1)((19)/(67))`

D

`tan^(-1)(59)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \tan^{-1}\left(\frac{5}{13}\right) + \cos^{-1}\left(\frac{3}{5}\right) \), we can follow these steps: ### Step 1: Let \( y = \tan^{-1}\left(\frac{5}{13}\right) + \cos^{-1}\left(\frac{3}{5}\right) \) ### Step 2: Convert \( \cos^{-1}\left(\frac{3}{5}\right) \) into \( \tan^{-1} \) Let \( \theta = \cos^{-1}\left(\frac{3}{5}\right) \). Then, by definition of cosine: \[ \cos \theta = \frac{3}{5} \] ### Step 3: Use the Pythagorean theorem to find \( \sin \theta \) In a right triangle, if the adjacent side is 3 and the hypotenuse is 5, we can find the opposite side using: \[ \sin^2 \theta + \cos^2 \theta = 1 \] \[ \sin^2 \theta + \left(\frac{3}{5}\right)^2 = 1 \] \[ \sin^2 \theta + \frac{9}{25} = 1 \] \[ \sin^2 \theta = 1 - \frac{9}{25} = \frac{16}{25} \] \[ \sin \theta = \frac{4}{5} \] ### Step 4: Find \( \tan \theta \) Now, we can find \( \tan \theta \): \[ \tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{\frac{4}{5}}{\frac{3}{5}} = \frac{4}{3} \] ### Step 5: Substitute back into the equation Now we can rewrite \( y \): \[ y = \tan^{-1}\left(\frac{5}{13}\right) + \tan^{-1}\left(\frac{4}{3}\right) \] ### Step 6: Use the formula for the sum of arctangents Using the formula: \[ \tan^{-1} a + \tan^{-1} b = \tan^{-1}\left(\frac{a + b}{1 - ab}\right) \] where \( a = \frac{5}{13} \) and \( b = \frac{4}{3} \): \[ y = \tan^{-1}\left(\frac{\frac{5}{13} + \frac{4}{3}}{1 - \frac{5}{13} \cdot \frac{4}{3}}\right) \] ### Step 7: Calculate the numerator Finding a common denominator for the numerator: \[ \frac{5}{13} + \frac{4}{3} = \frac{5 \cdot 3 + 4 \cdot 13}{39} = \frac{15 + 52}{39} = \frac{67}{39} \] ### Step 8: Calculate the denominator Calculating the denominator: \[ 1 - \frac{5}{13} \cdot \frac{4}{3} = 1 - \frac{20}{39} = \frac{39 - 20}{39} = \frac{19}{39} \] ### Step 9: Substitute back into the formula Now substituting back: \[ y = \tan^{-1}\left(\frac{\frac{67}{39}}{\frac{19}{39}}\right) = \tan^{-1}\left(\frac{67}{19}\right) \] ### Final Answer Thus, we have: \[ y = \tan^{-1}\left(\frac{67}{19}\right) \] ### Summary of the Answer The final answer is: \[ \tan^{-1}\left(\frac{67}{19}\right) \]
Promotional Banner

Topper's Solved these Questions

  • THREE DIMENSIONAL GEOMETRY

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|150 Videos
  • VECTOR

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|301 Videos

Similar Questions

Explore conceptually related problems

sin^(-1)((5)/(13))+cos^(-1)((3)/(5))=

Prove that 2sin^(-1)((3)/(5))-cos^(-1)((5)/(13))=cos^(-1)((323)/(325))

Prove that: sin^(-1)(-(4)/(5))=tan^(-1)(-(4)/(3))=co^(-1)(-(3)/(5))-pi

Prove that cos^(-1)((3)/(5))+cos^(-1)((12)/(13))+cos^(-1)((63)/(65))=(pi)/(2)

Prove that: tan^(-1)(63)/(16)=sin^(-1)(5)/(13)+cos^(-1)(3)/(5)

Prove that :tan^(-1)(63)/(16)=sin^(-1)(5)/(13)+cos^(-1)(3)/(5)

Let alpha=2tan^(-1)((1)/(2))+(sin^(-1)3)/(5) and beta=sin^(-1)((12)/(13))+cos^(-1)((4)/(5))+cos^(-1)((16)/(63)) be such that2sin alpha and cos beta are roots of the equation x^(2)-px+q=0, then (p-q) is

Prove the following results: tan((sin^(-1)(15))/(13)+(cos^(-1)3)/(5))=(63)/(16) (ii) sin((cos^(-1)3)/(5)+(sin^(-1)5)/(13))=(63)/(65)

cos^(-1)((12)/(13))+sin^(-1)((3)/(5)) =

Prove the following: tan^(-1)((1)/(4))+tan^(-1)((2)/(9))=(1)/(2)cos^(-1)((3)/(5))