Home
Class 12
MATHS
Prove that: sin^(-1)(12)/(13)+cos^(-1)4/...

Prove that: `sin^(-1)(12)/(13)+cos^(-1)4/5+tan^(-1)(63)/(16)=pi`

A

`(pi)/(2)`

B

`pi`

C

`tan^(-1)((12)/(5))`

D

`tan^(-1)((3)/(4))`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • THREE DIMENSIONAL GEOMETRY

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|150 Videos
  • VECTOR

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|301 Videos

Similar Questions

Explore conceptually related problems

Show that (sin^(-1)(12))/(13)+(cos^(-1)4)/(5)+(tan^(-1)(63))/(16)=pi

Show that sin^(-1)'5/13+cos^(-1)'3/5=tan^(-1)'63/16 .

Prove that: sin^(-1)((5)/(13))+cos^(-1)((4)/(5))=(1)/(2)sin^(-1)((3696)/(4225))

Prove that sin^(-1)(5/13)+sin^(-1)(16/65)=cos^(-1)(4/5)

Prove that cos^(-1) ((5)/(13))+cos^(-1) (-7/25)+sin^(-1) (36)/(325)=pi

Prove that: cos^(-1)((12)/(13))+sin^(-1)((3)/(5))=sin^(-1)((56)/(65))

Let alpha=2tan^(-1)((1)/(2))+(sin^(-1)3)/(5) and beta=sin^(-1)((12)/(13))+cos^(-1)((4)/(5))+cos^(-1)((16)/(63)) be such that2sin alpha and cos beta are roots of the equation x^(2)-px+q=0, then (p-q) is

Prove that: sin^(-1)((3)/(5))+cos^(-1)((12)/(13))=sin^(-1)((56)/(65))

sin^(-1)(5/13)+tan^(-1)(12/5)=

Prove that: tan^(-1)(63)/(16)=sin^(-1)(5)/(13)+cos^(-1)(3)/(5)