Home
Class 12
MATHS
tan(tan^(-1)((1)/(2))-tan^(-1)((1)/(3)))...

`tan(tan^(-1)((1)/(2))-tan^(-1)((1)/(3)))=`

A

`(1)/(6)`

B

`(1)/(7)`

C

`(5)/(6)`

D

`(7)/(6)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the question \( \tan(\tan^{-1}(\frac{1}{2}) - \tan^{-1}(\frac{1}{3})) \), we can use the formula for the tangent of the difference of two angles. The formula states: \[ \tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B} \] Here, we can let \( A = \tan^{-1}(\frac{1}{2}) \) and \( B = \tan^{-1}(\frac{1}{3}) \). Therefore, we have: \[ \tan A = \frac{1}{2} \quad \text{and} \quad \tan B = \frac{1}{3} \] Now, we can substitute these values into the formula: \[ \tan(\tan^{-1}(\frac{1}{2}) - \tan^{-1}(\frac{1}{3})) = \frac{\tan A - \tan B}{1 + \tan A \tan B} \] Substituting the values of \( \tan A \) and \( \tan B \): \[ = \frac{\frac{1}{2} - \frac{1}{3}}{1 + \left(\frac{1}{2}\right)\left(\frac{1}{3}\right)} \] Next, we will simplify the numerator: 1. Find a common denominator for \( \frac{1}{2} \) and \( \frac{1}{3} \): - The least common multiple of 2 and 3 is 6. - Rewrite \( \frac{1}{2} = \frac{3}{6} \) and \( \frac{1}{3} = \frac{2}{6} \). Thus, the numerator becomes: \[ \frac{3}{6} - \frac{2}{6} = \frac{1}{6} \] 2. Now, simplify the denominator: \[ 1 + \left(\frac{1}{2}\right)\left(\frac{1}{3}\right) = 1 + \frac{1}{6} = \frac{6}{6} + \frac{1}{6} = \frac{7}{6} \] Now we can substitute back into our equation: \[ \tan(\tan^{-1}(\frac{1}{2}) - \tan^{-1}(\frac{1}{3})) = \frac{\frac{1}{6}}{\frac{7}{6}} = \frac{1}{6} \cdot \frac{6}{7} = \frac{1}{7} \] Thus, the final answer is: \[ \tan(\tan^{-1}(\frac{1}{2}) - \tan^{-1}(\frac{1}{3})) = \frac{1}{7} \]
Promotional Banner

Topper's Solved these Questions

  • THREE DIMENSIONAL GEOMETRY

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|150 Videos
  • VECTOR

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|301 Videos

Similar Questions

Explore conceptually related problems

2tan^(-1)((1)/(3))+tan^(-1)((1)/(2))=

cos(tan^(-1)((1)/(3))+tan^(-1)((1)/(2)))=

Prove that tan^(-1)1+tan^(-1)((1)/(2))+tan^(-1)((1)/(3))=(pi)/(2)

Prove that 3tan^(-1)((1)/(2+sqrt(3)))-tan^(-1)((1)/(2))=tan^(-1)((1)/(3))

Prove that : tan^(-1) 1 + tan^(-1) 2 + tan^(-1) 3= pi = 2(tan^(-1) 1 + tan^(-1)((1)/(2)) + tan^(-1)( (1)/(3)))

2Tan^(-1)(1)/(3)+tan^(-1)((1)/(7))=

Prove that 2tan^(-1)((1)/(2))=tan^(-1)((4)/(3))

general solution of sec theta=(tan^(-1)(1)+tan^(-1)(2)+tan^(-1)(3))/(tan^(-1)1+tan^(-1)((1)/(2))+tan^(-1)((1)/(3))) is theta=

general solution of sec theta=(tan^(-1)(1)+tan^(-1)(2)+tan^(-1)(3))/(tan^(-1)1+tan^(-1)((1)/(2))+tan^(-1)((1)/(3))) is theta=

tan^(-1)((1)/(2))+tan^(-1)((1)/(3))=(pi)/(4)|0tan(1)+tan(1)