Home
Class 12
MATHS
If sin(cot^(-1)(x+1))=costan^(-1)x, then...

If `sin(cot^(-1)(x+1))=costan^(-1)x`, then x=

A

`0`

B

`(9)/(4)`

C

`(1)/(2)`

D

`(-1)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin(\cot^{-1}(x + 1)) = \cos(\tan^{-1}(x)) \), we will follow these steps: ### Step 1: Understand the Inverse Functions Let \( \theta = \cot^{-1}(x + 1) \). Then, we have: \[ \cot(\theta) = x + 1 \] This means that in a right triangle, the adjacent side is \( x + 1 \) and the opposite side is \( 1 \). ### Step 2: Find the Hypotenuse Using the Pythagorean theorem, we can find the hypotenuse \( h \): \[ h = \sqrt{(x + 1)^2 + 1^2} = \sqrt{(x + 1)^2 + 1} = \sqrt{x^2 + 2x + 2} \] ### Step 3: Calculate \( \sin(\theta) \) Now, we can find \( \sin(\theta) \): \[ \sin(\theta) = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{1}{\sqrt{x^2 + 2x + 2}} \] ### Step 4: Understand the Second Inverse Function Let \( \alpha = \tan^{-1}(x) \). Then, we have: \[ \tan(\alpha) = x \] This means that in another right triangle, the opposite side is \( x \) and the adjacent side is \( 1 \). ### Step 5: Find the Hypotenuse for the Second Triangle Using the Pythagorean theorem again, we can find the hypotenuse \( h' \): \[ h' = \sqrt{x^2 + 1^2} = \sqrt{x^2 + 1} \] ### Step 6: Calculate \( \cos(\alpha) \) Now, we can find \( \cos(\alpha) \): \[ \cos(\alpha) = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{1}{\sqrt{x^2 + 1}} \] ### Step 7: Set Up the Equation Now we have: \[ \sin(\cot^{-1}(x + 1)) = \cos(\tan^{-1}(x)) \] This translates to: \[ \frac{1}{\sqrt{x^2 + 2x + 2}} = \frac{1}{\sqrt{x^2 + 1}} \] ### Step 8: Cross Multiply Cross-multiplying gives us: \[ \sqrt{x^2 + 1} = \sqrt{x^2 + 2x + 2} \] ### Step 9: Square Both Sides Squaring both sides results in: \[ x^2 + 1 = x^2 + 2x + 2 \] ### Step 10: Simplify the Equation Subtract \( x^2 \) from both sides: \[ 1 = 2x + 2 \] Now, subtract 2 from both sides: \[ -1 = 2x \] Finally, divide by 2: \[ x = -\frac{1}{2} \] ### Final Answer Thus, the solution to the equation is: \[ \boxed{-\frac{1}{2}} \]
Promotional Banner

Topper's Solved these Questions

  • THREE DIMENSIONAL GEOMETRY

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|150 Videos
  • VECTOR

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|301 Videos

Similar Questions

Explore conceptually related problems

If sin (cot^(-1)(1-x))=cos(tan^(-1)(-x)) , then x is

If A=sin[cot^(-1){cos(tan^(-1)x)}], then

sin {cot^(-1)[tan (cos^(-1)x)]=

sin{cot^(-1)[cos(tan^(-1)x)]}=....

if cot^(-1)alpha+cot^(-1)beta=cot^(-1)x then x

If x!=n and cot^(-1)x+cot^(-1)(n^(2)-x+1)=cot^(-1)(n-1) then x=