Home
Class 12
MATHS
sin(sin^(-1)((1)/(3))+sec^(-1)(3))+cos(t...

`sin(sin^(-1)((1)/(3))+sec^(-1)(3))+cos(tan^(-1)(1/2)+tan^(-1)2)`=

A

`1`

B

`2`

C

`0`

D

`-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sin(\sin^{-1}(\frac{1}{3}) + \sec^{-1}(3)) + \cos(\tan^{-1}(\frac{1}{2}) + \tan^{-1}(2)) \), we can break it down step by step. ### Step 1: Simplify \( \sec^{-1}(3) \) Recall that \( \sec^{-1}(x) = \cos^{-1}(\frac{1}{x}) \). Therefore, \[ \sec^{-1}(3) = \cos^{-1}(\frac{1}{3}). \] ### Step 2: Rewrite the first part Now, we can rewrite the first part of the expression: \[ \sin(\sin^{-1}(\frac{1}{3}) + \sec^{-1}(3)) = \sin(\sin^{-1}(\frac{1}{3}) + \cos^{-1}(\frac{1}{3})). \] ### Step 3: Use the identity for sine Using the identity \( \sin(a + b) = \sin a \cos b + \cos a \sin b \), where \( a = \sin^{-1}(\frac{1}{3}) \) and \( b = \cos^{-1}(\frac{1}{3}) \): - \( \sin(\sin^{-1}(\frac{1}{3})) = \frac{1}{3} \) - \( \cos(\sin^{-1}(\frac{1}{3})) = \sqrt{1 - \left(\frac{1}{3}\right)^2} = \sqrt{\frac{8}{9}} = \frac{2\sqrt{2}}{3} \) - \( \sin(\cos^{-1}(\frac{1}{3})) = \sqrt{1 - \left(\frac{1}{3}\right)^2} = \frac{2\sqrt{2}}{3} \) - \( \cos(\cos^{-1}(\frac{1}{3})) = \frac{1}{3} \) Now substituting these values: \[ \sin(\sin^{-1}(\frac{1}{3}) + \cos^{-1}(\frac{1}{3})) = \frac{1}{3} \cdot \frac{1}{3} + \frac{2\sqrt{2}}{3} \cdot \frac{2\sqrt{2}}{3} = \frac{1}{9} + \frac{8}{9} = 1. \] ### Step 4: Simplify \( \tan^{-1}(\frac{1}{2}) + \tan^{-1}(2) \) Using the identity \( \tan^{-1}(x) + \tan^{-1}(y) = \tan^{-1}\left(\frac{x+y}{1-xy}\right) \) when \( xy < 1 \): \[ \tan^{-1}(\frac{1}{2}) + \tan^{-1}(2) = \tan^{-1}\left(\frac{\frac{1}{2} + 2}{1 - \frac{1}{2} \cdot 2}\right) = \tan^{-1}\left(\frac{\frac{5}{2}}{0}\right) = \frac{\pi}{2}. \] ### Step 5: Evaluate \( \cos(\tan^{-1}(\frac{1}{2}) + \tan^{-1}(2)) \) Since \( \tan^{-1}(\frac{1}{2}) + \tan^{-1}(2) = \frac{\pi}{2} \): \[ \cos\left(\frac{\pi}{2}\right) = 0. \] ### Step 6: Combine results Now we can combine the results: \[ \sin(\sin^{-1}(\frac{1}{3}) + \sec^{-1}(3)) + \cos(\tan^{-1}(\frac{1}{2}) + \tan^{-1}(2)) = 1 + 0 = 1. \] ### Final Answer Thus, the final answer is: \[ \boxed{1}. \]
Promotional Banner

Topper's Solved these Questions

  • THREE DIMENSIONAL GEOMETRY

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|150 Videos
  • VECTOR

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|301 Videos

Similar Questions

Explore conceptually related problems

sin[cos^(-1)(3/5)+tan^(-1)2]=

Find the principal value of: i) sin^(-1)(sqrt(3)/2) ii) sin^(-1)(1/2) iii) cos^(-1)(1/2) iv) tan^(-1)(1) v) tan^(-1)(1/sqrt(3)) vi) sec^(-1)(2/sqrt(3)) , vii) "cosec"^(-1)(sqrt(2)) .

Evaluate the following: sin^(-1)(sin(pi)/(4)) (ii) cos^(-1)(cos2(pi)/(3))tan^(-1)(tan(pi)/(3))

Evaluate the following: 1*sin^(-1)(sin(2 pi)/(3))2cos^(-1)(cos(7 pi)/(6))3*tan^(-1)(tan(2 pi)/(3))

Evaluate each of the following: sin^(-1)(sin(pi)/(3)) (ii) cos^(-1)(cos(2 pi)/(3))tan^(-1)(tan(pi)/(4))(iv)sin^(-1)(sin(2 pi)/(3))cos^(-1)(cos(7 pi)/(7))(vi)tan^(-1)(tan(3 pi)/(4))sin^(-1)(cos(-600^(@))cos^(-1)(cos(-680^(@)))

cos^(-1)((-1)/(2))-2sin^(-1)((1)/(2))+3cos^(-1)((-1)/(sqrt(2)))-4tan^(-1)(-1) equals to

sin[cos^(-1)(-1/2)+tan^(-1)(sqrt(3))]

sin ^ (- 1) (sin3) + cos ^ (- 1) (cos7) -tan ^ (- 1) (tan5) =