Home
Class 12
MATHS
The objective function z=15x+30y subject...

The objective function `z=15x+30y` subject to `3x+yle12,x+2yle10,xge0,yge0,` can be maximized

A

at infinite number of points

B

at two points only

C

at one points only

D

at three points only

Text Solution

AI Generated Solution

The correct Answer is:
To solve the linear programming problem of maximizing the objective function \( z = 15x + 30y \) subject to the constraints: 1. \( 3x + y \leq 12 \) 2. \( x + 2y \leq 10 \) 3. \( x \geq 0 \) 4. \( y \geq 0 \) we will follow these steps: ### Step 1: Identify the Constraints The constraints are: - \( 3x + y \leq 12 \) - \( x + 2y \leq 10 \) - \( x \geq 0 \) - \( y \geq 0 \) ### Step 2: Find the Intercepts of the Constraints For the first constraint \( 3x + y = 12 \): - When \( x = 0 \), \( y = 12 \) (y-intercept). - When \( y = 0 \), \( x = 4 \) (x-intercept). For the second constraint \( x + 2y = 10 \): - When \( x = 0 \), \( y = 5 \) (y-intercept). - When \( y = 0 \), \( x = 10 \) (x-intercept). ### Step 3: Graph the Constraints Plot the lines on a graph: - The line \( 3x + y = 12 \) will pass through the points \( (4, 0) \) and \( (0, 12) \). - The line \( x + 2y = 10 \) will pass through the points \( (10, 0) \) and \( (0, 5) \). ### Step 4: Determine the Feasible Region The feasible region is where the shaded areas of the constraints overlap, considering the non-negativity constraints \( x \geq 0 \) and \( y \geq 0 \). This region will be in the first quadrant. ### Step 5: Identify the Corner Points The corner points of the feasible region can be found by solving the equations of the lines: 1. Intersection of \( 3x + y = 12 \) and \( x + 2y = 10 \): - Multiply the second equation by 3: \( 3x + 6y = 30 \) - Subtract the first equation from this: \( 5y = 18 \) → \( y = \frac{18}{5} \) - Substitute \( y \) back into \( 3x + \frac{18}{5} = 12 \): \[ 3x = 12 - \frac{18}{5} = \frac{60 - 18}{5} = \frac{42}{5} \implies x = \frac{14}{5} \] - So one corner point is \( \left(\frac{14}{5}, \frac{18}{5}\right) \). 2. The other corner points are: - \( (0, 0) \) - \( (0, 5) \) - \( (4, 0) \) ### Step 6: Evaluate the Objective Function at Each Corner Point Now we evaluate \( z = 15x + 30y \) at each corner point: 1. At \( (0, 0) \): \[ z = 15(0) + 30(0) = 0 \] 2. At \( (0, 5) \): \[ z = 15(0) + 30(5) = 150 \] 3. At \( (4, 0) \): \[ z = 15(4) + 30(0) = 60 \] 4. At \( \left(\frac{14}{5}, \frac{18}{5}\right) \): \[ z = 15\left(\frac{14}{5}\right) + 30\left(\frac{18}{5}\right) = \frac{210}{5} + \frac{540}{5} = \frac{750}{5} = 150 \] ### Step 7: Determine the Maximum Value The maximum value of \( z \) occurs at the points \( (0, 5) \) and \( \left(\frac{14}{5}, \frac{18}{5}\right) \), both yielding \( z = 150 \). ### Conclusion The maximum value of the objective function \( z = 15x + 30y \) is \( 150 \) at the points \( (0, 5) \) and \( \left(\frac{14}{5}, \frac{18}{5}\right) \). ---
Promotional Banner

Topper's Solved these Questions

  • LINE

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|127 Videos
  • MATRICES

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|277 Videos

Similar Questions

Explore conceptually related problems

The objective function z=x+y subject to x+yle10,3x-2yle15,xle6,xge0,yge0 can be maximized

The objective function z=4x+3y subject to 3x+4yle24,8x+6yle48,xle5,yle6,xge0,yge0 can be maximized

The objective function z=x+2y subject to x+2yge50,2x-yle0,2x+yle100,x,yge0 can be minimized

The maximum value of z=15x+30y subject to 3x+yle12,x+2yle10,xge0,yge0 is

Maximise Z=5x+3y Subject to 3x+5yle15, 5x+2yle10,xge0,yge0 .

Minimise z=3x+y , subject to 2x+3yle6,x+yge1, xge0,yge0

Minimise Z=-3x+4y Subject to x+2yle8, 3x+2yle12,xge0,yge0 .

The maximum value of z=9x+11y subject to 3x+2y le12,2x+3yle12,xge0,yge0 is

The maximum value of z=7x+11y subject to 3x+5yle26,5x+3yle30,xge0,yge0, is

The maximum value of z=75x+50y subject to 8x+5yle60,4x+5yle40,xge0,yge0 is

NIKITA PUBLICATION-LINEAR PROGRAMMING-MCQs
  1. Maximise Z=5x+3y Subject to 3x+5yle15, 5x+2yle10,xge0,yge0.

    Text Solution

    |

  2. The maximum value of z=15x+30y subject to 3x+yle12,x+2yle10,xge0,yge0 ...

    Text Solution

    |

  3. The objective function z=15x+30y subject to 3x+yle12,x+2yle10,xge0,yge...

    Text Solution

    |

  4. The maximum value of z=x+y subject to x+yle10,3x-2yle15,xle6,xge0,yge0...

    Text Solution

    |

  5. The objective function z=x+y subject to x+yle10,3x-2yle15,xle6,xge0,yg...

    Text Solution

    |

  6. The objective function z = x1 + x2, subject to x1 + x2 leq 10,-2x1 + 3...

    Text Solution

    |

  7. The objective function z = x1 + x2, subject to x1 + x2 leq 10,-2x1 + 3...

    Text Solution

    |

  8. The objective function z=4x+3y subject to 3x+4yle24,8x+6yle48,xle5,yle...

    Text Solution

    |

  9. The maximum value of Z is where, Z=4x+2 subject to constraints 4x+2yge...

    Text Solution

    |

  10. By graphical method, the solutions of linear programming problem maxim...

    Text Solution

    |

  11. The point for which the maximum value of z=x+y subject to the constrai...

    Text Solution

    |

  12. The minimum value of z=20x+20y subject to x+2yge8,3x+2yge15,5x+2yge20...

    Text Solution

    |

  13. The minimum value of z=6x+21y subject to x+2yge3,x+4yge4,3x+yge3,xge0,...

    Text Solution

    |

  14. The minimum value of z=20x+9y subject to 2x+yge36,6x+yge60,xge0,yge0 i...

    Text Solution

    |

  15. The minimum value of z=7x+y subject to 5x+yge5,x+yge3,xge0,yge0 is

    Text Solution

    |

  16. The minimum value of z=8x+10y subject to 2x+yge7,2x+3yge15,yge2,xge0,y...

    Text Solution

    |

  17. The minimum value of z=6x+2y subject to 5x+9yle90,x+yge4,yle8,xge0,yge...

    Text Solution

    |

  18. The objective function, z=4x(1)+5x(2), subject to 2x(1)+x(2)ge7,2x(1)+...

    Text Solution

    |

  19. The minimum value of z=3x+5y subject to 2x+3yge12,-x+yle3,xle4,yge3 is

    Text Solution

    |

  20. The minimum value of z=8x+4y subject to x+2yge2,3x+yge3,4x+3yge6,xge0,...

    Text Solution

    |