Home
Class 12
MATHS
By graphical method, the solutions of li...

By graphical method, the solutions of linear programming problem maximise `Z=3x_(1)+5x_(2)` subject to constraints `3x_(1)+2x_(2) le 18, x_(1) le 4, x_(2) le 6 x_(1) ge0,x_(2) ge 0 ` are

A

`x_(1)=2,x_(2)=0,z=6`

B

`x_(1)=2,x_(2)=6,z=36`

C

`x_(1)=4,x_(2)=3,z=27`

D

`x_(1)=4,x_(2)=6,z=42`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • LINE

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|127 Videos
  • MATRICES

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|277 Videos

Similar Questions

Explore conceptually related problems

By graphical method, the solutions of linear programming problem maximum Z = 3x_1 + 5x_2 subject to constraints 3x_1+2x_2 le 18 x_1 le 4, x_2 le 6,x_1 ge 0, x_2 ge 0

The linear programming problem : Maximize z=z=x_(1)+x_(2) subject to constraints x_(1)+2x_(2)le2000,x_(1)+x_(2)le1500,x_(2)le600,x_(1)ge0 has

The iinear programming problem Maximise Z=x_1 +x_2 Subject to constraints x_1+2x_2 le le 2000 x_1+ x_2 le 15000 x_2 le 600 x_1 ge has

For L.P.P. maximize z = 4x_(1) + 2X_(2) subject to 3x_(1) + 2x_(2) ge 9, x_(1) - x_(2) le 3,x_(1) ge 0, x_(2) ge 0 has ……

Maximize z = x_(1) + 3x_(2) Subject to 3x_(1) + 6x_(2) le 8 5x_(1) + 2x_(2) le 10 and x_(1), x_(2) ge 0

Maximize z = 5x_(1) + 3x_(2) Subject to 3x_(1) + 5x_(2) le 15 5x_(1) + 2x_(2) le 10 x_(1), x_(2) ge 0

Maximize z = -x_(1) + 2x_(2) Subject to -x_(1) + x_(2) le 1 -x_(1) + 2x_(2) le 4 x_(1), x_(2) le 0

The linear programming problem minimiseZ=3x+2y subject to the constraints x+y ge 8 3x +5y le 15 x ge 0, y ge 0 has

Solve the linear programming problem. Maximise Z = x + 2y Subject to constraints x - y le 10, 2x +3y le 20 and x ge 0, y ge 0

NIKITA PUBLICATION-LINEAR PROGRAMMING-MCQs
  1. The objective function z=4x+3y subject to 3x+4yle24,8x+6yle48,xle5,yle...

    Text Solution

    |

  2. The maximum value of Z is where, Z=4x+2 subject to constraints 4x+2yge...

    Text Solution

    |

  3. By graphical method, the solutions of linear programming problem maxim...

    Text Solution

    |

  4. The point for which the maximum value of z=x+y subject to the constrai...

    Text Solution

    |

  5. The minimum value of z=20x+20y subject to x+2yge8,3x+2yge15,5x+2yge20...

    Text Solution

    |

  6. The minimum value of z=6x+21y subject to x+2yge3,x+4yge4,3x+yge3,xge0,...

    Text Solution

    |

  7. The minimum value of z=20x+9y subject to 2x+yge36,6x+yge60,xge0,yge0 i...

    Text Solution

    |

  8. The minimum value of z=7x+y subject to 5x+yge5,x+yge3,xge0,yge0 is

    Text Solution

    |

  9. The minimum value of z=8x+10y subject to 2x+yge7,2x+3yge15,yge2,xge0,y...

    Text Solution

    |

  10. The minimum value of z=6x+2y subject to 5x+9yle90,x+yge4,yle8,xge0,yge...

    Text Solution

    |

  11. The objective function, z=4x(1)+5x(2), subject to 2x(1)+x(2)ge7,2x(1)+...

    Text Solution

    |

  12. The minimum value of z=3x+5y subject to 2x+3yge12,-x+yle3,xle4,yge3 is

    Text Solution

    |

  13. The minimum value of z=8x+4y subject to x+2yge2,3x+yge3,4x+3yge6,xge0,...

    Text Solution

    |

  14. The minimum value of z=2x+4y subject to x+2yge2,3x+2yge6,xge0,yge0 is

    Text Solution

    |

  15. The objective function z=2x+4y subject to 2x+yge3,x+2yge6,xge0yge0 can...

    Text Solution

    |

  16. The minimum value of z=x+2y subject to x+2yge50,2x-yle0,2x+yle100,xge0...

    Text Solution

    |

  17. The objective function z=x+2y subject to x+2yge50,2x-yle0,2x+yle100,x,...

    Text Solution

    |

  18. Minimize z = 6x + 4y , subject to 3x + 2y ge12, x + ...

    Text Solution

    |

  19. The objective function z=6x+4y subjective to 3x+2yge12,x+yge5,0lexle4,...

    Text Solution

    |

  20. The co-ordinates of the point for minimum value z = 7x - 8y subject ...

    Text Solution

    |