Home
Class 12
MATHS
The approximate value of sin (60^(@) 0' ...

The approximate value of `sin (60^(@) 0' 10'')," if "1^(@)=0.175^(@)` is

A

`0.8660243`

B

`0.8660244`

C

`0.866243`

D

`0.866244`

Text Solution

AI Generated Solution

The correct Answer is:
To find the approximate value of \( \sin(60^\circ 0' 10'') \) given that \( 1^\circ = 0.175 \) radians, we can follow these steps: ### Step 1: Convert the angle to radians The angle \( 60^\circ 0' 10'' \) can be converted to degrees first: - \( 10'' = \frac{10}{3600} \) degrees (since there are 3600 seconds in a degree). - Therefore, \( 60^\circ 0' 10'' = 60 + \frac{10}{3600} = 60 + \frac{1}{360} \) degrees. ### Step 2: Calculate the total degrees Now, we can calculate: \[ 60 + \frac{1}{360} \approx 60.0027778^\circ \] ### Step 3: Convert degrees to radians Using the conversion \( 1^\circ = 0.0175 \) radians: \[ \text{Total radians} = (60.0027778) \times 0.0175 \] ### Step 4: Calculate the sine using the approximation Let \( x = 60^\circ \) and \( h = 10'' \). We can use the formula for small angles: \[ \sin(x + h) \approx \sin x + h \cos x \] Where: - \( \sin(60^\circ) = \frac{\sqrt{3}}{2} \) - \( \cos(60^\circ) = \frac{1}{2} \) ### Step 5: Calculate \( h \) Convert \( h \) (10 seconds) to radians: \[ h = 10'' = \frac{10}{3600} \text{ degrees} = \frac{10 \times 0.0175}{3600} \text{ radians} \] Calculating this gives: \[ h \approx \frac{0.175}{360} \approx 0.0004861 \text{ radians} \] ### Step 6: Substitute the values into the sine approximation Now substituting into the sine approximation: \[ \sin(60^\circ 0' 10'') \approx \sin(60^\circ) + h \cos(60^\circ) \] \[ = \frac{\sqrt{3}}{2} + 0.0004861 \cdot \frac{1}{2} \] \[ = 0.866025 + 0.00024305 \] \[ \approx 0.866268 \] ### Final Result Thus, the approximate value of \( \sin(60^\circ 0' 10'') \) is approximately \( 0.866268 \). ---
Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF DEFINITEINTEGRAL

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS:(MCQ)|27 Videos
  • BINOMIAL DISTRIBUTION

    NIKITA PUBLICATION|Exercise MCQS|77 Videos

Similar Questions

Explore conceptually related problems

The approximate value of sin (60^(@) 45')," if "1^(@)=0.0175^(@) is

The approximate value of tan (45^(@) 10')," if "1^(@)=0.0175^(@) is

The approximate value of cos (60^(@) 40')," if "1^(@)=0.0175^(@), sin =60^(@)=0.8660 is

The approximate value of sin31^(@) is

Find the approximate values of : cos(60^(@)30')," given "1^(@)=0.0175^( c )" and "sin60^(@)=0.8660 .

Find the approximate values of : tan(44^(@))," given "1^(@)=0.0175^( c ) .

Find the approximate value of sin(61^(@)) given that 1^(@)=0.0174^(c) sqrt(3)=1.732

Find the approximate value of cos(29^(@)30') given 1^(@)=0.0175^(c) and cos30^(@)=0.8660

The approximate value of sin^(-1)(0.51)," if "(1)/(sqrt(3))=0.5774 is

The approximate value of root(3)(0.009) is

NIKITA PUBLICATION-APPLICATIONS OF DERIVATIVES-MULTIPLE CHOICE QUESTIONS
  1. Using differentials, find the approximate value of (3. 968)^(3/2)

    Text Solution

    |

  2. The apprximate value of sin(31^(@)), given that 1^(@)=0.0175, cos 30^(...

    Text Solution

    |

  3. The approximate value of sin (60^(@) 0' 10'')," if "1^(@)=0.175^(@) is

    Text Solution

    |

  4. The approximate value of sin (60^(@) 45')," if "1^(@)=0.0175^(@) is

    Text Solution

    |

  5. Find the approximate value of cos (29^@ 30prime) given 1^@ = 0.0175^c ...

    Text Solution

    |

  6. Find the approximate values of : cos(60^(@)30')," given "1^(@)=0.01...

    Text Solution

    |

  7. The approximate value of cos (60^(@) 40')," if "1^(@)=0.0175^(@), sin ...

    Text Solution

    |

  8. Find the approximate values of : cos(89^(@)30)," given "1^(@)=0.0175...

    Text Solution

    |

  9. Find the approximate values of : tan(44^(@))," given "1^(@)=0.0175^...

    Text Solution

    |

  10. The approximate value of tan (45^(@) 10')," if "1^(@)=0.0175^(@) is

    Text Solution

    |

  11. The approximate value of sin^(-1)(0.51)," if "(1)/(sqrt(3))=0.5774 is

    Text Solution

    |

  12. Approximate value of tan^(-1)(0.999) is

    Text Solution

    |

  13. Find the approximate values of : tan^(-1)(1.001).

    Text Solution

    |

  14. Find the approximate values of : cot^(-1)(1.001)

    Text Solution

    |

  15. Find the approximate values of : cot^(-1)(1.001)

    Text Solution

    |

  16. Find the approximate value of e^(1.005) (given e = 2.7183)

    Text Solution

    |

  17. Find the approximate value of e^(1.005) (given e = 2.7183)

    Text Solution

    |

  18. Find the approximate value of :e^2.1 given that e^2=7. 389

    Text Solution

    |

  19. log(10) (4.04), it being given that log(10) 4 = 0.6021 and log(10) e =...

    Text Solution

    |

  20. Find the approximate value of loge(9*01) given loge 3=1*0986

    Text Solution

    |