Home
Class 12
MATHS
The approximate value of sin (60^(@) 45'...

The approximate value of `sin (60^(@) 45')," if "1^(@)=0.0175^(@)` is

A

`0.8752`

B

`0.8762`

C

`0.8725`

D

`0.8726`

Text Solution

AI Generated Solution

The correct Answer is:
To find the approximate value of \( \sin(60^\circ 45') \), we can follow these steps: ### Step 1: Convert the angle into degrees The angle \( 60^\circ 45' \) can be expressed in degrees as: \[ 60^\circ + 45' = 60^\circ + \frac{45}{60}^\circ = 60^\circ + 0.75^\circ = 60.75^\circ \] **Hint:** Remember that 1 minute is \( \frac{1}{60} \) of a degree. ### Step 2: Define \( x \) and \( \Delta x \) Let: \[ x = 60^\circ \quad \text{and} \quad \Delta x = 0.75^\circ \] ### Step 3: Convert degrees to radians Given that \( 1^\circ = 0.0175 \) radians, we convert \( \Delta x \) into radians: \[ \Delta x = 0.75^\circ \times 0.0175 \, \text{radians/degree} = 0.013125 \, \text{radians} \] **Hint:** Use the conversion factor provided to change degrees to radians. ### Step 4: Differentiate \( y = \sin x \) The derivative of \( y = \sin x \) with respect to \( x \) is: \[ \frac{dy}{dx} = \cos x \] ### Step 5: Evaluate \( \cos x \) at \( x = 60^\circ \) We know: \[ \cos(60^\circ) = \frac{1}{2} \] ### Step 6: Calculate \( \Delta y \) Using the formula for the change in \( y \): \[ \Delta y = \frac{dy}{dx} \cdot \Delta x = \cos(60^\circ) \cdot \Delta x = \frac{1}{2} \cdot 0.013125 = 0.0065625 \] **Hint:** Make sure to multiply the derivative by the change in angle in radians. ### Step 7: Find \( \sin(60^\circ) \) We know: \[ \sin(60^\circ) = \frac{\sqrt{3}}{2} \approx 0.866025 \] ### Step 8: Calculate \( \sin(60^\circ 45') \) Now, we can approximate: \[ \sin(60^\circ 45') \approx \sin(60^\circ) + \Delta y \approx 0.866025 + 0.0065625 \approx 0.8725875 \] ### Step 9: Round to the nearest option Rounding \( 0.8725875 \) gives us approximately \( 0.8726 \). **Final Answer:** The approximate value of \( \sin(60^\circ 45') \) is \( 0.8726 \).
Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF DEFINITEINTEGRAL

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS:(MCQ)|27 Videos
  • BINOMIAL DISTRIBUTION

    NIKITA PUBLICATION|Exercise MCQS|77 Videos

Similar Questions

Explore conceptually related problems

The approximate value of sin (60^(@) 0' 10'')," if "1^(@)=0.175^(@) is

The approximate value of cos (60^(@) 40')," if "1^(@)=0.0175^(@), sin =60^(@)=0.8660 is

The approximate value of tan (45^(@) 10')," if "1^(@)=0.0175^(@) is

The approximate value of sin31^(@) is

Find the approximate values of : cos(60^(@)30')," given "1^(@)=0.0175^( c )" and "sin60^(@)=0.8660 .

Find the approximate values of : tan(44^(@))," given "1^(@)=0.0175^( c ) .

Find the approximate values of : cos(89^(@)30)," given "1^(@)=0.0175^( c ) .

Find the approximate value of sin(61^(@)) given that 1^(@)=0.0174^(c) sqrt(3)=1.732

Find the approximate value of cos(29^(@)30') given 1^(@)=0.0175^(c) and cos30^(@)=0.8660

The apprximate value of sin(31^(@)) , given that 1^(@)=0.0175, cos 30^(@)=0.8660 is

NIKITA PUBLICATION-APPLICATIONS OF DERIVATIVES-MULTIPLE CHOICE QUESTIONS
  1. The apprximate value of sin(31^(@)), given that 1^(@)=0.0175, cos 30^(...

    Text Solution

    |

  2. The approximate value of sin (60^(@) 0' 10'')," if "1^(@)=0.175^(@) is

    Text Solution

    |

  3. The approximate value of sin (60^(@) 45')," if "1^(@)=0.0175^(@) is

    Text Solution

    |

  4. Find the approximate value of cos (29^@ 30prime) given 1^@ = 0.0175^c ...

    Text Solution

    |

  5. Find the approximate values of : cos(60^(@)30')," given "1^(@)=0.01...

    Text Solution

    |

  6. The approximate value of cos (60^(@) 40')," if "1^(@)=0.0175^(@), sin ...

    Text Solution

    |

  7. Find the approximate values of : cos(89^(@)30)," given "1^(@)=0.0175...

    Text Solution

    |

  8. Find the approximate values of : tan(44^(@))," given "1^(@)=0.0175^...

    Text Solution

    |

  9. The approximate value of tan (45^(@) 10')," if "1^(@)=0.0175^(@) is

    Text Solution

    |

  10. The approximate value of sin^(-1)(0.51)," if "(1)/(sqrt(3))=0.5774 is

    Text Solution

    |

  11. Approximate value of tan^(-1)(0.999) is

    Text Solution

    |

  12. Find the approximate values of : tan^(-1)(1.001).

    Text Solution

    |

  13. Find the approximate values of : cot^(-1)(1.001)

    Text Solution

    |

  14. Find the approximate values of : cot^(-1)(1.001)

    Text Solution

    |

  15. Find the approximate value of e^(1.005) (given e = 2.7183)

    Text Solution

    |

  16. Find the approximate value of e^(1.005) (given e = 2.7183)

    Text Solution

    |

  17. Find the approximate value of :e^2.1 given that e^2=7. 389

    Text Solution

    |

  18. log(10) (4.04), it being given that log(10) 4 = 0.6021 and log(10) e =...

    Text Solution

    |

  19. Find the approximate value of loge(9*01) given loge 3=1*0986

    Text Solution

    |

  20. Find the approximate value of loge(101) given loge 10=2*3026

    Text Solution

    |