Home
Class 12
MATHS
If f(x)=2x^(3)-21x^(2)+36x-20, then...

If `f(x)=2x^(3)-21x^(2)+36x-20`, then

A

f has maxima at x=6

B

f has minima at x=6

C

f has maximum value -128

D

f has minimum value -3

Text Solution

AI Generated Solution

The correct Answer is:
To find the maximum and minimum values of the function \( f(x) = 2x^3 - 21x^2 + 36x - 20 \), we will follow these steps: ### Step 1: Find the first derivative \( f'(x) \) The first derivative of the function will help us find the critical points where the function may have maximum or minimum values. \[ f'(x) = \frac{d}{dx}(2x^3 - 21x^2 + 36x - 20) \] Using the power rule of differentiation: \[ f'(x) = 6x^2 - 42x + 36 \] ### Step 2: Set the first derivative equal to zero To find the critical points, we set \( f'(x) = 0 \): \[ 6x^2 - 42x + 36 = 0 \] ### Step 3: Simplify the equation We can simplify the equation by dividing everything by 6: \[ x^2 - 7x + 6 = 0 \] ### Step 4: Factor the quadratic equation Now we will factor the quadratic: \[ (x - 6)(x - 1) = 0 \] ### Step 5: Solve for \( x \) Setting each factor to zero gives us the critical points: \[ x - 6 = 0 \quad \Rightarrow \quad x = 6 \] \[ x - 1 = 0 \quad \Rightarrow \quad x = 1 \] ### Step 6: Find the second derivative \( f''(x) \) To determine whether these critical points are maxima or minima, we will find the second derivative: \[ f''(x) = \frac{d}{dx}(6x^2 - 42x + 36) = 12x - 42 \] ### Step 7: Evaluate the second derivative at the critical points Now we will evaluate \( f''(x) \) at the critical points \( x = 1 \) and \( x = 6 \). 1. For \( x = 1 \): \[ f''(1) = 12(1) - 42 = 12 - 42 = -30 \quad (\text{less than } 0 \Rightarrow \text{maximum}) \] 2. For \( x = 6 \): \[ f''(6) = 12(6) - 42 = 72 - 42 = 30 \quad (\text{greater than } 0 \Rightarrow \text{minimum}) \] ### Step 8: Find the maximum and minimum values Now we will evaluate the function \( f(x) \) at the critical points to find the maximum and minimum values. 1. For \( x = 1 \): \[ f(1) = 2(1)^3 - 21(1)^2 + 36(1) - 20 = 2 - 21 + 36 - 20 = -3 \] 2. For \( x = 6 \): \[ f(6) = 2(6)^3 - 21(6)^2 + 36(6) - 20 = 2(216) - 21(36) + 216 - 20 \] Calculating each term: \[ = 432 - 756 + 216 - 20 = -128 \] ### Conclusion - The maximum value of \( f(x) \) occurs at \( x = 1 \) and is \( -3 \). - The minimum value of \( f(x) \) occurs at \( x = 6 \) and is \( -128 \).
Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF DEFINITEINTEGRAL

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS:(MCQ)|27 Videos
  • BINOMIAL DISTRIBUTION

    NIKITA PUBLICATION|Exercise MCQS|77 Videos

Similar Questions

Explore conceptually related problems

If f(x)=2x^(3)-21 x^(2)+36x-20 , then

If f(x)=2x^(3)-21x^(2)+36x-30 , then which one of the following is correct?

Find the local maxima and minima of the function f(x)=2x^(3)-21x^(2)+36x-20 .

Examine the following functions for maxima and minima : f(x)=2x^(3)-21x^(2)+36x-20

Find all the points of local maxima and minima and the corresponding maximum and minimum values of the function f(x)=2x^(3)-21x^(2)+36x-20

Find all the points of local maxima and minima and the corresponding maximum and minimum values of the function f(x)=2x^(3)-21x^(2)+36x-20

Determine the maximum and minimum values of the function f(x) = 2x^(3) - 21 x^(2) + 36x-20

The minimum value of the function f(x)=2x^(3)-21x^(2)+36x-20 is -128(b)-126(c)-120(d) none of these

Examine the maxima and minima of the function f (x) = 2x^(3) - 21 x^(2) + 36x - 20 . Also, find the maximum and minimum values of f (x).

The maximum value of the function f(x)=2x^(3)-15x^(2)+36x-48 on the set A={x|x^(2)|20<=9x} is