Home
Class 12
MATHS
If f(x)=3x^(3)-9x^(2)-27x+15, then...

If `f(x)=3x^(3)-9x^(2)-27x+15`, then

A

f has maximum value 66

B

f has minimum value -66

C

f has maxima at x=3

D

f has minima at x=-1

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF DEFINITEINTEGRAL

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS:(MCQ)|27 Videos
  • BINOMIAL DISTRIBUTION

    NIKITA PUBLICATION|Exercise MCQS|77 Videos

Similar Questions

Explore conceptually related problems

If f(x)=3x^(3)-9x^(2)-27x+15 ,t hen the maximum value of f(x) is

If f(x)=x^(3)-9x^(2)+24x, then f

If f(x)=x^(3)-9x^(2)+24x, then f

Examine the following functions for maxima and minima : f(x)=3x^(3)-9x^(2)-27x+15

The maximum value of the function f(x)=3x^(3)-18x^(2)+27x-40 on the set S={x in R: x^(2)+30 le 11x} is:

Maximum value of f(x)=x^(3)-9x^(2)+24x-15 is

Maximum value of f(x)=2x^(3)-9x^(2)+24x-15 is

If x satisfies the condition f(x)={x:x^(2)+30<=11x} then maximum value of function f(x)=3x^(3)-18x^(2)-27x-40 is equal to (A)-122(B)122(C)222(D)-222

Let f(x) =x^(3) - 6x^2 +9x +18 , then f(x) is strictly decreasing in …………

Determine the intervals in which the following functions are strictly increasing or strictly decreasing : f(x)=2x^(3)-9x^(2)+12x+15