Home
Class 12
MATHS
If a^(2)gtb^(2), then the minimum value ...

If `a^(2)gtb^(2),` then the minimum value of `f(x)=a^(2) cos^(2)x+b^(2) sin^(2) x` is

A

`a^(2)-b^(2)`

B

`a^(2)+b^(2)`

C

`a^(2)`

D

`b^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the minimum value of the function \( f(x) = a^2 \cos^2 x + b^2 \sin^2 x \) given that \( a^2 > b^2 \), we can follow these steps: ### Step 1: Differentiate the function We start by differentiating \( f(x) \) with respect to \( x \): \[ f'(x) = \frac{d}{dx}(a^2 \cos^2 x + b^2 \sin^2 x) \] Using the chain rule, we get: \[ f'(x) = a^2 \cdot 2 \cos x (-\sin x) + b^2 \cdot 2 \sin x \cos x \] This simplifies to: \[ f'(x) = -2a^2 \sin x \cos x + 2b^2 \sin x \cos x \] Factoring out \( 2 \sin x \cos x \): \[ f'(x) = 2 \sin x \cos x (b^2 - a^2) \] ### Step 2: Set the derivative to zero To find the critical points, we set \( f'(x) = 0 \): \[ 2 \sin x \cos x (b^2 - a^2) = 0 \] This gives us two cases: 1. \( \sin x = 0 \) 2. \( \cos x = 0 \) ### Step 3: Solve for critical points From \( \sin x = 0 \), we have: \[ x = n\pi \quad (n \in \mathbb{Z}) \] From \( \cos x = 0 \), we have: \[ x = \frac{\pi}{2} + n\pi \quad (n \in \mathbb{Z}) \] ### Step 4: Evaluate the function at critical points Now we evaluate \( f(x) \) at the critical points: 1. For \( x = 0 \): \[ f(0) = a^2 \cos^2(0) + b^2 \sin^2(0) = a^2 \cdot 1 + b^2 \cdot 0 = a^2 \] 2. For \( x = \frac{\pi}{2} \): \[ f\left(\frac{\pi}{2}\right) = a^2 \cos^2\left(\frac{\pi}{2}\right) + b^2 \sin^2\left(\frac{\pi}{2}\right) = a^2 \cdot 0 + b^2 \cdot 1 = b^2 \] ### Step 5: Determine the minimum value Since \( a^2 > b^2 \), we conclude that: \[ f(0) = a^2 \quad \text{and} \quad f\left(\frac{\pi}{2}\right) = b^2 \] Thus, the minimum value of \( f(x) \) occurs at \( x = \frac{\pi}{2} \) and is: \[ \text{Minimum value} = b^2 \] ### Final Answer The minimum value of \( f(x) = a^2 \cos^2 x + b^2 \sin^2 x \) is \( b^2 \). ---
Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF DEFINITEINTEGRAL

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS:(MCQ)|27 Videos
  • BINOMIAL DISTRIBUTION

    NIKITA PUBLICATION|Exercise MCQS|77 Videos

Similar Questions

Explore conceptually related problems

The minimum value of (a^(2))/(cos^(2)x)+(b^(2))/(sin^(2)x)

If f(x)=sin(2x)+5 then the minimum value of f(x) is

If f(x)=sin(2x)+5 then the minimum value of f(x) is

The minimum value of 2cos x-3cos^(2)x+5 is

The minimum value of a^(cos^(2)x)+a^(sin^(2)x)AA(a>0) is

The minimum value of 2^(sin x)+2^(cos x)

The minimum value of f(x)=2^(((log_(8)3)))cos^(2)x+3((log_(8)^(2)))sin^(2)x_( is )

The minimum value of 2^((log_(6)3) cos^(2)x ) + 3^((log_(6)2)sin^(2)x) is

The minimum value of f(x)-sin^(4)x+cos^(4)x,0lexle(pi)/(2) is

NIKITA PUBLICATION-APPLICATIONS OF DERIVATIVES-MULTIPLE CHOICE QUESTIONS
  1. The maximum value of f(x)=a sin x +b cos x is

    Text Solution

    |

  2. The minimum value of f(x)= a sin x+b cos x is

    Text Solution

    |

  3. If a^(2)gtb^(2), then the minimum value of f(x)=a^(2) cos^(2)x+b^(2) s...

    Text Solution

    |

  4. The function f(x)=log x

    Text Solution

    |

  5. The function f(x)=x log x

    Text Solution

    |

  6. On [1,e] the greatest value of x^(2) log x is

    Text Solution

    |

  7. The maximum value of f(x) =(log x)/(x) (x ne 0, x ne 1) is

    Text Solution

    |

  8. The function f(x)=x^(2)e^(x) has minimum value

    Text Solution

    |

  9. The function f(x)=x^(2)e^(x) has maximum value

    Text Solution

    |

  10. The function f(x)=x^(x) has

    Text Solution

    |

  11. The value of a for which the sum of the square of the roots of the equ...

    Text Solution

    |

  12. The least value of the sum of any positive real number and its recipro...

    Text Solution

    |

  13. The real numbers which must exceeds its cube is

    Text Solution

    |

  14. If x ,y in R^+ satisfying x+y=3, then the maximum value of x^2y is.

    Text Solution

    |

  15. Two parts of the number 20 such that their product is maximum are

    Text Solution

    |

  16. Divide the number 84 into two parts such that the product of one part ...

    Text Solution

    |

  17. The sum of squares of two parts of a number 100 is minimum, then two p...

    Text Solution

    |

  18. The combined resistance R of two resistors R(1) and R(2) " where " R(1...

    Text Solution

    |

  19. A telephone company in the town has 5000 subscribers on its list and c...

    Text Solution

    |

  20. A manufacturer can sell x items at the price of Rs. (330-x) each. The ...

    Text Solution

    |