Home
Class 12
MATHS
int(0)^(1) (dx)/(sqrt(1+x)sqrt(x))=...

`int_(0)^(1) (dx)/(sqrt(1+x)sqrt(x))=`

A

`2/3 (sqrt(2)-1)`

B

`2/3(sqrt(2)+1)`

C

`4/3(sqrt(2)-1)`

D

`4/3(sqrt(2)+1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{0}^{1} \frac{dx}{\sqrt{1+x} \sqrt{x}}, \] we will perform a substitution and simplify the integral step by step. ### Step 1: Substitution Let \( x = t^2 \). Then, we have: \[ dx = 2t \, dt. \] ### Step 2: Change the limits of integration When \( x = 0 \), \( t = 0 \). When \( x = 1 \), \( t = 1 \). Thus, the limits of integration remain from 0 to 1. ### Step 3: Substitute into the integral Now substitute \( x \) and \( dx \) into the integral: \[ I = \int_{0}^{1} \frac{2t \, dt}{\sqrt{1+t^2} \sqrt{t^2}}. \] ### Step 4: Simplify the integral Since \( \sqrt{t^2} = t \) for \( t \geq 0 \), we can simplify: \[ I = \int_{0}^{1} \frac{2t \, dt}{\sqrt{1+t^2} \cdot t} = \int_{0}^{1} \frac{2 \, dt}{\sqrt{1+t^2}}. \] ### Step 5: Factor out the constant Now we can factor out the constant 2: \[ I = 2 \int_{0}^{1} \frac{dt}{\sqrt{1+t^2}}. \] ### Step 6: Solve the integral The integral \( \int \frac{dt}{\sqrt{1+t^2}} \) is a standard integral that evaluates to \( \ln(t + \sqrt{1+t^2}) + C \). Thus, \[ \int_{0}^{1} \frac{dt}{\sqrt{1+t^2}} = \left[ \ln(t + \sqrt{1+t^2}) \right]_{0}^{1}. \] ### Step 7: Evaluate the limits Now we evaluate the limits: 1. When \( t = 1 \): \[ \ln(1 + \sqrt{1+1^2}) = \ln(1 + \sqrt{2}) = \ln(1 + \sqrt{2}). \] 2. When \( t = 0 \): \[ \ln(0 + \sqrt{1+0^2}) = \ln(1) = 0. \] Thus, \[ \int_{0}^{1} \frac{dt}{\sqrt{1+t^2}} = \ln(1 + \sqrt{2}) - 0 = \ln(1 + \sqrt{2}). \] ### Step 8: Final result Substituting back, we have: \[ I = 2 \ln(1 + \sqrt{2}). \] ### Conclusion The final answer for the integral is: \[ \int_{0}^{1} \frac{dx}{\sqrt{1+x} \sqrt{x}} = 2 \ln(1 + \sqrt{2}). \] ---
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|374 Videos
  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(1)(dx)/(3sqrt(x))

int_(0)^(1)(1)/(sqrt(1+x)-sqrt(x))dx

int_(0)^(9)(dx)/(1+sqrt(x))

int_(0)^(1)(dx)/(sqrt(x+1)-sqrt(x))1dx

int_(0)^(1)(dx)/(sqrt(x(1-x)))

If int_(0)^(1)(1)/(sqrt(x+1)-sqrt(x))dx=(a(sqrt(2)))/(3) , then a =

If int_(0)^(b)(1)/(sqrt(1+x)-sqrt(x))dx=(2)/(3)(2sqrt(2)) , then b =

int_(0)^(1)(x)/(1+sqrt(x))dx

int(dx)/(sqrt(x)sqrt(1-x))

int_(0)^(1)(1)/(1+sqrt(x))dx