Home
Class 12
MATHS
int(3)^(5) (dx)/(sqrt(x+4)+sqrt(x-2))=...

`int_(3)^(5) (dx)/(sqrt(x+4)+sqrt(x-2))=`

A

`1/9 (28-3sqrt(3) - 7 sqrt(7))`

B

`1/9 (28-3sqrt(3) + 7 sqrt(7))`

C

`1/9 (28+3sqrt(3) -7 sqrt(7))`

D

`1/9 (28+3sqrt(3) +7 sqrt(7))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the definite integral \[ \int_{3}^{5} \frac{dx}{\sqrt{x+4} + \sqrt{x-2}}, \] we will follow these steps: ### Step 1: Rationalize the Denominator We start by multiplying the numerator and denominator by the conjugate of the denominator, which is \(\sqrt{x+4} - \sqrt{x-2}\): \[ \int_{3}^{5} \frac{dx}{\sqrt{x+4} + \sqrt{x-2}} \cdot \frac{\sqrt{x+4} - \sqrt{x-2}}{\sqrt{x+4} - \sqrt{x-2}}. \] This gives us: \[ \int_{3}^{5} \frac{\sqrt{x+4} - \sqrt{x-2}}{(\sqrt{x+4})^2 - (\sqrt{x-2})^2} \, dx. \] ### Step 2: Simplify the Denominator Now, we simplify the denominator: \[ (\sqrt{x+4})^2 - (\sqrt{x-2})^2 = (x+4) - (x-2) = x + 4 - x + 2 = 6. \] So, the integral simplifies to: \[ \int_{3}^{5} \frac{\sqrt{x+4} - \sqrt{x-2}}{6} \, dx = \frac{1}{6} \int_{3}^{5} (\sqrt{x+4} - \sqrt{x-2}) \, dx. \] ### Step 3: Split the Integral We can split the integral into two parts: \[ \frac{1}{6} \left( \int_{3}^{5} \sqrt{x+4} \, dx - \int_{3}^{5} \sqrt{x-2} \, dx \right). \] ### Step 4: Compute Each Integral Now we compute each integral separately. 1. **Integral of \(\sqrt{x+4}\)**: Using the formula \(\int x^n \, dx = \frac{x^{n+1}}{n+1}\): \[ \int \sqrt{x+4} \, dx = \int (x+4)^{1/2} \, dx = \frac{2}{3}(x+4)^{3/2}. \] Evaluating from 3 to 5: \[ \left[ \frac{2}{3}(x+4)^{3/2} \right]_{3}^{5} = \frac{2}{3} \left[ (5+4)^{3/2} - (3+4)^{3/2} \right] = \frac{2}{3} \left[ 9^{3/2} - 7^{3/2} \right]. \] Calculating \(9^{3/2} = 27\) and \(7^{3/2} = 7\sqrt{7}\). 2. **Integral of \(\sqrt{x-2}\)**: Similarly, \[ \int \sqrt{x-2} \, dx = \int (x-2)^{1/2} \, dx = \frac{2}{3}(x-2)^{3/2}. \] Evaluating from 3 to 5: \[ \left[ \frac{2}{3}(x-2)^{3/2} \right]_{3}^{5} = \frac{2}{3} \left[ (5-2)^{3/2} - (3-2)^{3/2} \right] = \frac{2}{3} \left[ 3^{3/2} - 1^{3/2} \right]. \] Calculating \(3^{3/2} = 3\sqrt{3}\) and \(1^{3/2} = 1\). ### Step 5: Combine Results Now we combine the results: \[ \frac{1}{6} \left( \frac{2}{3} \left[ 27 - 7\sqrt{7} \right] - \frac{2}{3} \left[ 3\sqrt{3} - 1 \right] \right). \] This simplifies to: \[ \frac{1}{9} \left[ 27 - 7\sqrt{7} - 3\sqrt{3} + 1 \right] = \frac{1}{9} \left[ 28 - 7\sqrt{7} - 3\sqrt{3} \right]. \] ### Final Answer Thus, the final answer is: \[ \frac{28 - 7\sqrt{7} - 3\sqrt{3}}{9}. \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|374 Videos
  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos

Similar Questions

Explore conceptually related problems

int(dx)/(sqrt(x)sqrt(5-x))

Evaluate the following : int_(2)^(5)(1)/(sqrt(x+4)+sqrt(x-2))dx.

int_(4)^(9)(dx)/(sqrt(x^(3)))

int_(4)^(9)(dx)/(sqrt(x^(3)))

int(dx)/(sqrt(3x+5)-sqrt(3x+2))=

int(dx)/(sqrt(5)sqrt(5-x)) = :

int_(1)^(4)(sqrt(x))/((sqrt(5-x)+sqrt(x)))dx=(3)/(2)

The value of int_(2)^(3)(sqrt(x))/(sqrt(5-x)+sqrt(x))dx is

The value of int_(2)^(3)(sqrt(x))/(sqrt(5-x)+sqrt(x))dx is . . . . .