Home
Class 12
MATHS
If int(0)^(1) (3x^(2) + 2x+ alpha)dx =0...

If `int_(0)^(1) (3x^(2) + 2x+ alpha)dx =0, " then " alpha=`

A

`1/2`

B

`(-1)/2`

C

2

D

`-2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral equation \( \int_{0}^{1} (3x^{2} + 2x + \alpha) \, dx = 0 \), we will follow these steps: ### Step 1: Set up the integral We start by writing the integral: \[ \int_{0}^{1} (3x^{2} + 2x + \alpha) \, dx = 0 \] ### Step 2: Break down the integral We can separate the integral into three parts: \[ \int_{0}^{1} 3x^{2} \, dx + \int_{0}^{1} 2x \, dx + \int_{0}^{1} \alpha \, dx = 0 \] ### Step 3: Calculate each integral Now we will calculate each integral individually. 1. **First integral**: \[ \int_{0}^{1} 3x^{2} \, dx = 3 \left[ \frac{x^{3}}{3} \right]_{0}^{1} = \left[ x^{3} \right]_{0}^{1} = 1^{3} - 0^{3} = 1 \] 2. **Second integral**: \[ \int_{0}^{1} 2x \, dx = 2 \left[ \frac{x^{2}}{2} \right]_{0}^{1} = \left[ x^{2} \right]_{0}^{1} = 1^{2} - 0^{2} = 1 \] 3. **Third integral**: \[ \int_{0}^{1} \alpha \, dx = \alpha \left[ x \right]_{0}^{1} = \alpha (1 - 0) = \alpha \] ### Step 4: Combine the results Now we combine the results of the integrals: \[ 1 + 1 + \alpha = 0 \] ### Step 5: Solve for \(\alpha\) We simplify the equation: \[ 2 + \alpha = 0 \] Now, solving for \(\alpha\): \[ \alpha = -2 \] ### Final Answer Thus, the value of \(\alpha\) is: \[ \alpha = -2 \] ---
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|374 Videos
  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos

Similar Questions

Explore conceptually related problems

If int_(0)^(alpha) (3x^(2) + 2x + 1) dx = 14, " then " alpha =

If int_(0)^(1) e^(x^(2))(x-alpha)dx=0 then

If int_(0)^(1)e^(x^(2))(x-alpha)dx=0, then

int_(0)^(1)(dx)/(3x+2)

If int_(0)^(1)e^(x)-2(x-alpha)dx=0, then aly alpha<2(b)=alpha<0(c)=0

int_(0)^(2)(3x^(2)+2x-1)dx=

int_(0)^(1) (1)/(x^(2) +2x+3)dx

If I=int_(0)^(2)e^(x^(4))(x-alpha)dx=0 , then alpha lies in the interval

int_(0)^(1)(x^(alpha)-1)/(log x)dx=

int_(0)^(3)(1)/(x^(2)-3x+2)dx