Home
Class 12
MATHS
int(0)^(pi//4) (dx)/(1+x^(2))...

`int_(0)^(pi//4) (dx)/(1+x^(2))`

A

0

B

1

C

`tan^(-1) (pi/4)`

D

`-tan ^(-1)(pi/4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the definite integral \(\int_{0}^{\frac{\pi}{4}} \frac{dx}{1+x^2}\), we can follow these steps: ### Step 1: Identify the integral The integral we are working with is: \[ I = \int_{0}^{\frac{\pi}{4}} \frac{dx}{1+x^2} \] ### Step 2: Recognize the form of the integral The integrand \(\frac{1}{1+x^2}\) is a standard form whose integral is known: \[ \int \frac{dx}{1+x^2} = \tan^{-1}(x) + C \] where \(C\) is the constant of integration for indefinite integrals. ### Step 3: Apply the definite integral limits Since we are dealing with a definite integral, we can directly apply the limits: \[ I = \left[ \tan^{-1}(x) \right]_{0}^{\frac{\pi}{4}} \] ### Step 4: Evaluate the integral at the limits Now we will evaluate \(\tan^{-1}(x)\) at the upper limit \(\frac{\pi}{4}\) and the lower limit \(0\): \[ I = \tan^{-1}\left(\frac{\pi}{4}\right) - \tan^{-1}(0) \] ### Step 5: Calculate the values We know that: \[ \tan^{-1}(0) = 0 \] And: \[ \tan^{-1}\left(\frac{\pi}{4}\right) = \frac{\pi}{4} \] Thus, substituting these values back into our equation gives: \[ I = \frac{\pi}{4} - 0 = \frac{\pi}{4} \] ### Final Answer Therefore, the value of the definite integral is: \[ I = \frac{\pi}{4} \] ---
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|374 Videos
  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//4)(dx)/((1+cos2x))

int_(0)^( pi/2)(x)/((1-x^(2)))dx

int_(0)^(pi//4) (1)/(1+cos 2x)dx

Statement-1: int_(0)^(pi//2) (1)/(1+tan^(3)x)dx=(pi)/(4) Statement-2: int_(0)^(a) f(x)dx=int_(0)^(a) f(a+x)dx

int_(0)^( pi/8)(1)/(1+4x^(2))dx=?

int_(0)^( pi/4)(1)/(cos^(2)x)dx

" 0."int_(0)^( pi/4)(dx)/(2+sin^(2)x)=

The value of int_(0)^( pi/2)(dx)/(1+tan^(3)x)(i)0(ii)1(iii(pi)/(2) (iv) (pi)/(4)

int_(0)^(pi//2)(dx)/(1+e^(sqrt(2)cos(x+(pi)/(4)))) is equal to