Home
Class 12
MATHS
int(0)^(2) (dx)/(4+x-x^(2))=...

`int_(0)^(2) (dx)/(4+x-x^(2))= `

A

`1/(2sqrt(17))log ((5+sqrt(17))/(5-sqrt(17)))`

B

`1/(2sqrt(17))log ((5-sqrt(17))/(5+sqrt(17)))`

C

`1/(sqrt(17))log ((5+sqrt(17))/(5-sqrt(17)))`

D

`1/(sqrt(17))log ((5-sqrt(17))/(5+sqrt(17)))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{0}^{2} \frac{dx}{4 + x - x^2}, \] we can start by rewriting the denominator. ### Step 1: Rewrite the Denominator We can rearrange the quadratic expression in the denominator: \[ 4 + x - x^2 = - (x^2 - x - 4). \] Thus, we have: \[ I = - \int_{0}^{2} \frac{dx}{x^2 - x - 4}. \] ### Step 2: Completing the Square Next, we complete the square for the quadratic \(x^2 - x - 4\): \[ x^2 - x - 4 = \left(x - \frac{1}{2}\right)^2 - \frac{1}{4} - 4 = \left(x - \frac{1}{2}\right)^2 - \frac{17}{4}. \] So, we can rewrite the integral as: \[ I = - \int_{0}^{2} \frac{dx}{\left(x - \frac{1}{2}\right)^2 - \frac{17}{4}}. \] ### Step 3: Use the Integral Formula The form of the integral now resembles the standard integral: \[ \int \frac{dx}{a^2 - u^2} = \frac{1}{2a} \ln \left| \frac{a + u}{a - u} \right| + C, \] where \(a = \frac{\sqrt{17}}{2}\) and \(u = x - \frac{1}{2}\). ### Step 4: Set Up the Integral Thus, we can express the integral as: \[ I = -\frac{1}{\sqrt{17}} \ln \left| \frac{\frac{\sqrt{17}}{2} + \left(x - \frac{1}{2}\right)}{\frac{\sqrt{17}}{2} - \left(x - \frac{1}{2}\right)} \right| \bigg|_0^2. \] ### Step 5: Evaluate the Limits Now we evaluate the limits: 1. For \(x = 2\): \[ I_2 = -\frac{1}{\sqrt{17}} \ln \left| \frac{\frac{\sqrt{17}}{2} + \left(2 - \frac{1}{2}\right)}{\frac{\sqrt{17}}{2} - \left(2 - \frac{1}{2}\right)} \right| = -\frac{1}{\sqrt{17}} \ln \left| \frac{\frac{\sqrt{17}}{2} + \frac{3}{2}}{\frac{\sqrt{17}}{2} - \frac{3}{2}} \right|. \] 2. For \(x = 0\): \[ I_0 = -\frac{1}{\sqrt{17}} \ln \left| \frac{\frac{\sqrt{17}}{2} + \left(0 - \frac{1}{2}\right)}{\frac{\sqrt{17}}{2} - \left(0 - \frac{1}{2}\right)} \right| = -\frac{1}{\sqrt{17}} \ln \left| \frac{\frac{\sqrt{17}}{2} - \frac{1}{2}}{\frac{\sqrt{17}}{2} + \frac{1}{2}} \right|. \] ### Step 6: Combine the Results Now we combine the results of the limits: \[ I = -\frac{1}{\sqrt{17}} \left( \ln \left| \frac{\frac{\sqrt{17}}{2} + \frac{3}{2}}{\frac{\sqrt{17}}{2} - \frac{3}{2}} \right| - \ln \left| \frac{\frac{\sqrt{17}}{2} - \frac{1}{2}}{\frac{\sqrt{17}}{2} + \frac{1}{2}} \right| \right). \] Using properties of logarithms, we can simplify this to: \[ I = -\frac{1}{\sqrt{17}} \ln \left( \frac{\frac{\sqrt{17}}{2} + \frac{3}{2}}{\frac{\sqrt{17}}{2} - \frac{3}{2}} \cdot \frac{\frac{\sqrt{17}}{2} + \frac{1}{2}}{\frac{\sqrt{17}}{2} - \frac{1}{2}} \right). \] ### Final Result After simplifying, we arrive at the final result: \[ I = \frac{1}{\sqrt{17}} \ln \left( \frac{5 + \sqrt{17}}{5 - \sqrt{17}} \right). \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|374 Videos
  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(2)(dx)/(x+4-x^(2))

int_(0)^(2) (1)/(4+x+x^(2))dx

int_(0)^(2)(1)/(4+x-x^(2))dx

Evaluate the integrals int_(0)^(2)(dx)/(x+4-x^(2))

int_(0)^(2)(dx)/(sqrt(4-x^(2)) =?

int_(0)^(2)(x+4)dx

int_(0)^(2)(dx)/(x+sqrt(4-x^(2)))

Evaluate: int_(0)^(2)(dx)/((17+8x-4x^(2))[e^(6(1-x))+1))

What int_(0)^(2) (dx)/(x^(2) + 4) equal to ?