Home
Class 12
MATHS
int (0) ^(1//2) dx/((1-2x^(2))sqrt(1-x^(...

`int _(0) ^(1//2) dx/((1-2x^(2))sqrt(1-x^(2)))=`

A

`(-1)/2 log (2+sqrt(3))`

B

`(1)/2 log (2+sqrt(3))`

C

`(-1)/4 log (2+sqrt(3))`

D

`(1)/4 log (2+sqrt(3))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_0^{\frac{1}{2}} \frac{dx}{(1 - 2x^2) \sqrt{1 - x^2}}, \] we will use the substitution method. Here are the steps: ### Step 1: Substitution Let \( x = \sin \theta \). Then, we have: \[ dx = \cos \theta \, d\theta. \] ### Step 2: Change the limits of integration When \( x = 0 \): \[ \sin \theta = 0 \implies \theta = 0. \] When \( x = \frac{1}{2} \): \[ \sin \theta = \frac{1}{2} \implies \theta = \frac{\pi}{6}. \] So, the limits change from \( 0 \) to \( \frac{\pi}{6} \). ### Step 3: Rewrite the integral Substituting \( x \) and \( dx \) into the integral gives: \[ I = \int_0^{\frac{\pi}{6}} \frac{\cos \theta \, d\theta}{(1 - 2\sin^2 \theta) \sqrt{1 - \sin^2 \theta}}. \] Since \( \sqrt{1 - \sin^2 \theta} = \cos \theta \), we can simplify the integral: \[ I = \int_0^{\frac{\pi}{6}} \frac{\cos \theta \, d\theta}{(1 - 2\sin^2 \theta) \cos \theta} = \int_0^{\frac{\pi}{6}} \frac{d\theta}{1 - 2\sin^2 \theta}. \] ### Step 4: Use the identity for \( 1 - 2\sin^2 \theta \) Recall that \( 1 - 2\sin^2 \theta = \cos 2\theta \). Thus, we can rewrite the integral as: \[ I = \int_0^{\frac{\pi}{6}} \frac{d\theta}{\cos 2\theta}. \] ### Step 5: Change to secant This can be expressed as: \[ I = \int_0^{\frac{\pi}{6}} \sec 2\theta \, d\theta. \] ### Step 6: Integrate The integral of \( \sec kx \) is given by: \[ \int \sec kx \, dx = \frac{1}{k} \ln | \sec kx + \tan kx | + C. \] In our case, \( k = 2 \): \[ I = \frac{1}{2} \ln | \sec 2\theta + \tan 2\theta | \bigg|_0^{\frac{\pi}{6}}. \] ### Step 7: Evaluate the limits Now we evaluate at the limits: 1. At \( \theta = \frac{\pi}{6} \): - \( \sec \frac{\pi}{3} = 2 \) - \( \tan \frac{\pi}{3} = \sqrt{3} \) Therefore, \[ \sec 2\left(\frac{\pi}{6}\right) + \tan 2\left(\frac{\pi}{6}\right) = 2 + \sqrt{3}. \] 2. At \( \theta = 0 \): - \( \sec 0 = 1 \) - \( \tan 0 = 0 \) Therefore, \[ \sec 0 + \tan 0 = 1. \] ### Step 8: Substitute back into the integral Putting it all together: \[ I = \frac{1}{2} \left( \ln(2 + \sqrt{3}) - \ln(1) \right) = \frac{1}{2} \ln(2 + \sqrt{3}). \] ### Final Answer Thus, the final answer is: \[ I = \frac{1}{2} \ln(2 + \sqrt{3}). \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|374 Videos
  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos

Similar Questions

Explore conceptually related problems

int_(0)^((pi)/(2))(dx)/((1-2x^(2))sqrt(1-x^(2)))=(1)/(2)log(2+sqrt(3))

int_(0)^((pi)/(2))(dx)/((1-2x^(2))sqrt(1-x^(2)))=(1)/(2)log(2+sqrt(3))

int_(0)^(1//2)(dx)/((1+x^(2))sqrt(1-x^(2))) is equal to

int(1)/(1-x^(2)) sqrt(1-x^(2))dx

Evaluate the following integral: int_0^(1//2)1/((1+x^2)sqrt(1-x^2))dx

" 0."int_(1/2)^(1)(dx)/(x^(2)sqrt(1-x^(2)))

Evaluate: int_(0)^(1)(2-x^(2))/((1+x)sqrt(1-x^(2)))dx

"int_(-1)^(1)(dx)/((2-x)sqrt(1-x^(2)))

int_(0)^(1/sqrt2)(dx)/(sqrt(1-x^(2)))