Home
Class 12
MATHS
int (0) ^(pi//4) tan^(2) x " " dx=...

`int _(0) ^(pi//4) tan^(2) x " " dx=`

A

`1-pi/4`

B

`1-pi/2`

C

`2-pi/4`

D

`2-pi/2`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|374 Videos
  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//4) tan x dx

int_(0)^(pi//4) tan^(6)x sec^(2)x dx=

If I = int_(0)^(pi//4) sin^(2) x" "dx and J = int_(0)^(pi//4)cos^(2)x" " dx. then

Evaluate : int_(0)^(pi//4) tan x . sec x dx

I_(n)=int_(0)^(pi//4) tan^(n)x dx , where n in N Statement-1: int_(0)^(pi//4) tan^(4)x dx=(3pi-8)/(12) Statement-2: I_(n)+I_(n-2)=(1)/(n-1)

int_(0)^(pi//2) sin 2 x (tan x) dx=

int_(0)^(pi//4) log (1+tan x) dx =?

The value of integral I = int_(0)^(pi//4) (tan^(2)x + 2sin^(2)x) dx is: