Home
Class 12
MATHS
int (0) ^(pi//2) (sin x +cos x)/ sqrt(1+...

`int _(0) ^(pi//2) (sin x +cos x)/ sqrt(1+sin 2x )" "dx=`

A

0

B

`pi`

C

`2pi`

D

`pi/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\sin x + \cos x}{\sqrt{1 + \sin 2x}} \, dx, \] we can simplify the expression under the integral. ### Step 1: Simplifying the denominator First, we know that \[ \sin 2x = 2 \sin x \cos x. \] Thus, we can rewrite the term \(1 + \sin 2x\) as: \[ 1 + \sin 2x = 1 + 2 \sin x \cos x. \] Using the Pythagorean identity, we can express \(1\) as \(\sin^2 x + \cos^2 x\). Therefore, we have: \[ 1 + \sin 2x = \sin^2 x + \cos^2 x + 2 \sin x \cos x = (\sin x + \cos x)^2. \] ### Step 2: Taking the square root Now, taking the square root of both sides gives us: \[ \sqrt{1 + \sin 2x} = \sqrt{(\sin x + \cos x)^2} = \sin x + \cos x, \] for \(x\) in the interval \([0, \frac{\pi}{2}]\) since both \(\sin x\) and \(\cos x\) are non-negative in this range. ### Step 3: Substituting back into the integral Now we can substitute this back into our integral: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\sin x + \cos x}{\sin x + \cos x} \, dx. \] This simplifies to: \[ I = \int_{0}^{\frac{\pi}{2}} 1 \, dx. \] ### Step 4: Evaluating the integral The integral of \(1\) with respect to \(x\) over the interval \([0, \frac{\pi}{2}]\) is simply: \[ I = x \bigg|_{0}^{\frac{\pi}{2}} = \frac{\pi}{2} - 0 = \frac{\pi}{2}. \] ### Final Answer Thus, the value of the integral is: \[ I = \frac{\pi}{2}. \] ---
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|374 Videos
  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos

Similar Questions

Explore conceptually related problems

The value of int _(0)^(pi//2) ((sin x + cos x)^(2))/(sqrt(1+sin 2x) dx is

int_(0)^(pi//2) x sin x cos x dx

int_(0) ^(pi//2) ((sin x +cos x )^(2))/sqrt(1+ sin 2x)dx =

int_(pi/6)^(pi/3) (sin x+ cos x)/(sqrt(sin 2x))dx

int_(0)^(pi//2)(sin x - cos x)/(1-sin x cos x)dx=

int_(0)^( pi/2)(sin x)/(1+cos x)dx

int_(0)^(pi/2)(sin^(2)x*cos x)dx=