Home
Class 12
MATHS
int(pi//4) ^(pi//2) (cos theta)/((cos (t...

`int_(pi//4) ^(pi//2) (cos theta)/((cos (theta/2) + sin (theta/2))^(3))d theta=`

A

`2/(cos(pi/8)+sin(pi/8))+sqrt(2)`

B

`(-2)/(cos(pi/8)+sin(pi/8))+sqrt(2)`

C

`(2)/(cos(pi/8)+sin(pi/8))-sqrt(2)`

D

`(-2)/(cos(pi/8)+sin(pi/8))-sqrt(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{\cos \theta}{(\cos \frac{\theta}{2} + \sin \frac{\theta}{2})^3} \, d\theta, \] we will follow these steps: ### Step 1: Rewrite \(\cos \theta\) We can express \(\cos \theta\) in terms of \(\cos \frac{\theta}{2}\) and \(\sin \frac{\theta}{2}\): \[ \cos \theta = \cos^2 \frac{\theta}{2} - \sin^2 \frac{\theta}{2}. \] ### Step 2: Substitute in the integral Substituting this into the integral gives: \[ I = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{\cos^2 \frac{\theta}{2} - \sin^2 \frac{\theta}{2}}{(\cos \frac{\theta}{2} + \sin \frac{\theta}{2})^3} \, d\theta. \] ### Step 3: Factor the numerator We can factor the numerator using the identity \(a^2 - b^2 = (a-b)(a+b)\): \[ I = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{(\cos \frac{\theta}{2} - \sin \frac{\theta}{2})(\cos \frac{\theta}{2} + \sin \frac{\theta}{2})}{(\cos \frac{\theta}{2} + \sin \frac{\theta}{2})^3} \, d\theta. \] This simplifies to: \[ I = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{\cos \frac{\theta}{2} - \sin \frac{\theta}{2}}{(\cos \frac{\theta}{2} + \sin \frac{\theta}{2})^2} \, d\theta. \] ### Step 4: Make a substitution Let \(t = \cos \frac{\theta}{2} + \sin \frac{\theta}{2}\). Then we need to find \(d\theta\) in terms of \(dt\): \[ \frac{d\theta}{d\left(\frac{\theta}{2}\right)} = 2 \implies d\theta = 2 \, d\left(\frac{\theta}{2}\right). \] Now we can differentiate \(t\): \[ dt = \left(-\frac{1}{2} \sin \frac{\theta}{2} + \frac{1}{2} \cos \frac{\theta}{2}\right) d\theta. \] ### Step 5: Change the limits When \(\theta = \frac{\pi}{4}\): \[ t = \cos \frac{\pi}{8} + \sin \frac{\pi}{8}, \] and when \(\theta = \frac{\pi}{2}\): \[ t = \cos \frac{\pi}{4} + \sin \frac{\pi}{4} = \sqrt{2}. \] ### Step 6: Substitute back into the integral Now, substituting everything back into the integral: \[ I = \int_{t(\frac{\pi}{4})}^{t(\frac{\pi}{2})} \frac{(\cos \frac{\theta}{2} - \sin \frac{\theta}{2})}{t^2} \cdot 2 \, dt. \] ### Step 7: Evaluate the integral The integral simplifies to: \[ I = 2 \int_{t(\frac{\pi}{4})}^{\sqrt{2}} (t - 1) t^{-2} \, dt. \] This can be integrated to: \[ I = 2 \left[-\frac{1}{t}\right]_{t(\frac{\pi}{4})}^{\sqrt{2}}. \] ### Step 8: Substitute the limits Substituting the limits gives: \[ I = 2 \left(-\frac{1}{\sqrt{2}} + \frac{1}{\cos \frac{\pi}{8} + \sin \frac{\pi}{8}}\right). \] ### Step 9: Final simplification This results in: \[ I = -2 \left(\frac{1}{\sqrt{2}} - \frac{1}{\cos \frac{\pi}{8} + \sin \frac{\pi}{8}}\right). \] ### Final Answer The final answer is: \[ I = -2 \left(\frac{1}{\sqrt{2}} - \frac{1}{\cos \frac{\pi}{8} + \sin \frac{\pi}{8}}\right). \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|374 Videos
  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos

Similar Questions

Explore conceptually related problems

int_(pi//4)^(pi//2)(costheta)/((cos\ (theta)/(2)+sin\ (theta)/(2)))\ d theta

" The value of the integral "int_(0)^( pi/2)(12sqrt(cos theta))/((sqrt(cos theta)+sqrt(sin theta))^(5))d theta" equals "...

int_(0)^((pi)/(2))(cos theta-sin theta)/((1+cos theta)(1+sin theta))d theta equals -

int_(0)^(pi//2) (sin^(2)theta)/ (1+cos theta)^(2) d theta =

Let the be an integrable function defined on [0,a] if I_(1)=int_(pi//2)^(pi//2) cos theta f(sin theta cos ^(2) theta)d theta and I_(2)=int_(0)^(pi//2)sin 2 theta f(sin theta cos ^(2) theta)d theta then

int_(0) ^(pi//2) cos^(2) theta d theta =

int_ (0) ^ (2 pi) e ^ (cos theta) cos (sin theta) d theta

Evaluate: int_(0)^( pi/2)(cos theta)/((1+sin theta)(2+sin theta))dth eta

int(2sin2 theta-cos theta)/(6-cos^(2)theta-4sin theta)d theta

int_ (0) ^ (pi / 2) ((theta) / (sin theta)) ^ (2) d theta =