Home
Class 12
MATHS
int(0)^(pi//2) sqrt(cos x) sin ^(3) x" "...

`int_(0)^(pi//2) sqrt(cos x) sin ^(3) x" "dx=`

A

`4/21`

B

`10/21`

C

`8/21`

D

`20/21`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\frac{\pi}{2}} \sqrt{\cos x} \sin^3 x \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We can express \( \sin^3 x \) as \( \sin^2 x \cdot \sin x \). Thus, we rewrite the integral as: \[ I = \int_{0}^{\frac{\pi}{2}} \sqrt{\cos x} \sin^2 x \sin x \, dx \] ### Step 2: Use the Identity for \( \sin^2 x \) Using the identity \( \sin^2 x = 1 - \cos^2 x \), we can substitute: \[ I = \int_{0}^{\frac{\pi}{2}} \sqrt{\cos x} (1 - \cos^2 x) \sin x \, dx \] This simplifies to: \[ I = \int_{0}^{\frac{\pi}{2}} \sqrt{\cos x} \sin x \, dx - \int_{0}^{\frac{\pi}{2}} \sqrt{\cos x} \cos^2 x \sin x \, dx \] ### Step 3: Substitution Let \( t = \cos x \). Then, \( dt = -\sin x \, dx \). The limits change as follows: - When \( x = 0 \), \( t = \cos(0) = 1 \) - When \( x = \frac{\pi}{2} \), \( t = \cos\left(\frac{\pi}{2}\right) = 0 \) Thus, we can rewrite the integral: \[ I = -\int_{1}^{0} \sqrt{t} (1 - t^2) \, dt \] Reversing the limits gives: \[ I = \int_{0}^{1} \sqrt{t} (1 - t^2) \, dt \] ### Step 4: Expand the Integral Now we expand the integrand: \[ I = \int_{0}^{1} \left( \sqrt{t} - t^{5/2} \right) \, dt \] ### Step 5: Integrate Now we can integrate term by term: \[ I = \int_{0}^{1} t^{1/2} \, dt - \int_{0}^{1} t^{5/2} \, dt \] Calculating these integrals: \[ \int t^{1/2} \, dt = \frac{t^{3/2}}{3/2} = \frac{2}{3} t^{3/2} \quad \text{from } 0 \text{ to } 1 \] \[ \int t^{5/2} \, dt = \frac{t^{7/2}}{7/2} = \frac{2}{7} t^{7/2} \quad \text{from } 0 \text{ to } 1 \] Thus: \[ I = \left[ \frac{2}{3} \cdot 1^{3/2} \right] - \left[ \frac{2}{7} \cdot 1^{7/2} \right] = \frac{2}{3} - \frac{2}{7} \] ### Step 6: Common Denominator Finding a common denominator (which is 21): \[ I = \frac{14}{21} - \frac{6}{21} = \frac{8}{21} \] ### Final Answer Thus, the value of the integral is: \[ I = \frac{8}{21} \] ---
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|374 Videos
  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos

Similar Questions

Explore conceptually related problems

Compute the integrals : (a) int_(0)^(pi//2) sin 2x dx , (b) int_(pi//6)^(pi//2) (cos x)/(sin^(3) x) dx (c) int_(0)^(1) (dx)/( sqrt(16 - x^(2)))

Prove that : int_(0)^(pi//2) (sin x -cos x) log (sin^(3) x + cos^(3)x) dx=0

Prove that : int_(0)^(pi//2) (sqrt(cos x))/(sqrt(sin x+ sqrt(cos x)))dx=(pi)/(4)

int_(0)^(pi//2) x sin x cos x dx

int_(0)^(pi//2) x sin cos x dx=?

int_(0)^(pi//6) (sin x) /(cos^(3)x) dx is

int_(0)^(pi//2) sqrt(sin x)/(sqrt(sin x ) + sqrt( cos x)) dx =

int_(0)^( pi/2)|cos x-sin x|dx