Home
Class 12
MATHS
int(0)^(pi) dx/(1-2acos x + a^(2)) =...

`int_(0)^(pi) dx/(1-2acos x + a^(2)) =`

A

`pi/(2-2a^(2))`

B

`pi/(1-a^(2))`

C

`2 pi (1-a^(2))`

D

`pi(1-a^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{0}^{\pi} \frac{dx}{1 - 2a \cos x + a^2} \] we can follow these steps: ### Step 1: Rewrite the Integral The expression in the denominator can be rewritten using the identity for cosine. We have: \[ 1 - 2a \cos x + a^2 = (1 - a e^{ix})(1 - a e^{-ix}) \] This suggests that we can use a substitution involving the tangent half-angle. ### Step 2: Use the Tangent Half-Angle Substitution Let \( t = \tan\left(\frac{x}{2}\right) \). Then, we have: \[ \cos x = \frac{1 - t^2}{1 + t^2} \] and \[ dx = \frac{2}{1 + t^2} dt \] The limits change as follows: - When \( x = 0 \), \( t = 0 \) - When \( x = \pi \), \( t \to \infty \) ### Step 3: Substitute in the Integral Substituting these into the integral gives: \[ I = \int_{0}^{\infty} \frac{\frac{2}{1+t^2} dt}{1 - 2a \frac{1 - t^2}{1 + t^2} + a^2} \] ### Step 4: Simplify the Denominator Now we simplify the denominator: \[ 1 - 2a \frac{1 - t^2}{1 + t^2} + a^2 = \frac{(1 + t^2) - 2a(1 - t^2) + a^2(1 + t^2)}{1 + t^2} \] This simplifies to: \[ \frac{(1 + a^2 + 2at^2 - 2a)}{1 + t^2} \] ### Step 5: Rewrite the Integral Thus, the integral becomes: \[ I = \int_{0}^{\infty} \frac{2 dt}{(1 + a^2 - 2a) + (1 + a^2 + 2a)t^2} \] ### Step 6: Factor Out Constants Let \( A = 1 + a^2 - 2a \) and \( B = 1 + a^2 + 2a \): \[ I = \frac{2}{B} \int_{0}^{\infty} \frac{dt}{\frac{A}{B} + t^2} \] ### Step 7: Evaluate the Integral The integral \[ \int_{0}^{\infty} \frac{dt}{c + t^2} = \frac{\pi}{2\sqrt{c}} \] for \( c = \frac{A}{B} \) gives: \[ I = \frac{2}{B} \cdot \frac{\pi}{2\sqrt{\frac{A}{B}}} = \frac{\pi}{\sqrt{AB}} \] ### Step 8: Substitute Back for A and B Now substituting back: \[ A = 1 + a^2 - 2a, \quad B = 1 + a^2 + 2a \] Thus, \[ AB = (1 + a^2 - 2a)(1 + a^2 + 2a) = (1 + a^2)^2 - (2a)^2 = 1 + 2a^2 + a^4 - 4a^2 = 1 - 2a^2 + a^4 \] ### Final Result Therefore, we have: \[ I = \frac{\pi}{\sqrt{(1 - 2a^2 + a^4)}} \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|374 Videos
  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2) (dx)/(1+2 cos x)

int_(0)^( pi)(sin x)/(1+cos^(2)x)dx =

int_(0)^(pi//2)(dx)/((1+cos^(2)x))

int_(0)^(pi/2)(x)/(1+cos x)dx =

int_(0)^((pi)/(2))(dx)/(1+2cos x)

int_(0)^( pi/2)(sin x)/(1+cos x)dx

If int_(0)^( pi)(1)/(a+b cos x)dx=(pi)/(sqrt(a^(2)-b^(2))), then int_(0)^( pi)(1)/((a+b cos x)^(2))dx is

Prove that : int_(0)^(pi) (x sin x)/(1+cos^(2)x) dx =(pi^(2))/(4)

int_(0)^( pi)(x)/(1+cos^(2)x)dx=