Home
Class 12
MATHS
int(0)^(pi//4)(sin 2 x)/(sin^(4) x + cos...

`int_(0)^(pi//4)(sin 2 x)/(sin^(4) x + cos^(4) x ) dx = `

A

`pi/2`

B

`pi/4`

C

`(3pi)/2`

D

`(3pi)/4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{0}^{\frac{\pi}{4}} \frac{\sin 2x}{\sin^4 x + \cos^4 x} \, dx, \] we will follow these steps: ### Step 1: Simplify the Denominator We start by simplifying the denominator \(\sin^4 x + \cos^4 x\). We can use the identity: \[ a^2 + b^2 = (a + b)^2 - 2ab. \] Let \(a = \sin^2 x\) and \(b = \cos^2 x\). Then we have: \[ \sin^4 x + \cos^4 x = (\sin^2 x + \cos^2 x)^2 - 2\sin^2 x \cos^2 x. \] Since \(\sin^2 x + \cos^2 x = 1\), we get: \[ \sin^4 x + \cos^4 x = 1 - 2\sin^2 x \cos^2 x. \] Using the identity \(\sin 2x = 2\sin x \cos x\), we can express \(\sin^2 x \cos^2 x\) as: \[ \sin^2 x \cos^2 x = \frac{\sin^2 2x}{4}. \] Thus, we can rewrite the denominator: \[ \sin^4 x + \cos^4 x = 1 - \frac{\sin^2 2x}{2}. \] ### Step 2: Rewrite the Integral Now substituting this back into the integral, we have: \[ I = \int_{0}^{\frac{\pi}{4}} \frac{\sin 2x}{1 - \frac{\sin^2 2x}{2}} \, dx. \] This can be simplified to: \[ I = \int_{0}^{\frac{\pi}{4}} \frac{2\sin 2x}{2 - \sin^2 2x} \, dx. \] ### Step 3: Substitution Let \(t = \cos 2x\). Then, we have: \[ dt = -2\sin 2x \, dx \implies dx = \frac{-dt}{2\sin 2x}. \] When \(x = 0\), \(t = \cos 0 = 1\) and when \(x = \frac{\pi}{4}\), \(t = \cos \frac{\pi}{2} = 0\). Thus, the limits change from \(1\) to \(0\). Substituting into the integral gives: \[ I = \int_{1}^{0} \frac{2\sin 2x}{2 - \sin^2 2x} \cdot \frac{-dt}{2\sin 2x} = \int_{0}^{1} \frac{dt}{2 - \sin^2 2x}. \] ### Step 4: Express \(\sin^2 2x\) in terms of \(t\) Since \(t = \cos 2x\), we have \(\sin^2 2x = 1 - t^2\). Therefore, the integral becomes: \[ I = \int_{0}^{1} \frac{dt}{2 - (1 - t^2)} = \int_{0}^{1} \frac{dt}{1 + t^2}. \] ### Step 5: Evaluate the Integral The integral \(\int \frac{dt}{1 + t^2}\) is known to be: \[ \int \frac{dt}{1 + t^2} = \tan^{-1}(t) + C. \] Thus, \[ I = \left[ \tan^{-1}(t) \right]_{0}^{1} = \tan^{-1}(1) - \tan^{-1}(0) = \frac{\pi}{4} - 0 = \frac{\pi}{4}. \] ### Final Answer Therefore, the value of the integral is: \[ \boxed{\frac{\pi}{4}}. \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|374 Videos
  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following : int_(0)^(pi//4)(sin 2x)/(sin^(4)x+cos^(4)x)dx.

Evaluate the following definite integrals: int_(0)^(pi//2)(sin 2x)/(sin^(4)x+cos^(4)x)dx

Prove that : int_(0)^(pi//2) (x sin x cos x)/(sin^(4) x+ cos^(4)x)dx =(pi)/(16)

The value of int_(0)^(pi//2) (sin^(3)x cos x)/(sin^(4)x+ cos^(4)x )dx is

int_(0)^( pi/2)(sin^(4)x)/(sin^(4)x+cos^(4)x)dx

int _(-pi)^(pi) (sin^(4)x)/(sin^(4) x + cos^(4) x )dx is equal to

int_(-pi//2)^(pi//2)(sin^(4)x)/(sin^(4)x + cos^(4)x)dx=

int_(0)^( pi/2)(sin2x)/(sin^(4)x+cos^(4)x)backslash dx