Home
Class 12
MATHS
If I(n) = int (0)^(pi//4) tan^(n) theta ...

If `I_(n) = int _(0)^(pi//4) tan^(n) theta " " d theta, "then "I_(8)+I_(6)=`

A

`1/4`

B

`1/5`

C

`1/6`

D

`1/7`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( I_8 + I_6 \), where \[ I_n = \int_0^{\frac{\pi}{4}} \tan^n \theta \, d\theta. \] ### Step 1: Write the expression for \( I_8 + I_6 \) We start by expressing \( I_8 + I_6 \): \[ I_8 + I_6 = \int_0^{\frac{\pi}{4}} \tan^8 \theta \, d\theta + \int_0^{\frac{\pi}{4}} \tan^6 \theta \, d\theta. \] ### Step 2: Factor out \( I_6 \) Notice that we can factor out \( I_6 \): \[ I_8 + I_6 = \int_0^{\frac{\pi}{4}} \tan^6 \theta \, d\theta + \int_0^{\frac{\pi}{4}} \tan^6 \theta \cdot \tan^2 \theta \, d\theta. \] This can be rewritten as: \[ I_8 + I_6 = \int_0^{\frac{\pi}{4}} \tan^6 \theta \left( 1 + \tan^2 \theta \right) d\theta. \] ### Step 3: Use the identity \( 1 + \tan^2 \theta = \sec^2 \theta \) Using the trigonometric identity \( 1 + \tan^2 \theta = \sec^2 \theta \), we can simplify the integral: \[ I_8 + I_6 = \int_0^{\frac{\pi}{4}} \tan^6 \theta \sec^2 \theta \, d\theta. \] ### Step 4: Substitute \( t = \tan \theta \) Now we will use the substitution \( t = \tan \theta \), which gives us \( dt = \sec^2 \theta \, d\theta \). The limits change as follows: - When \( \theta = 0 \), \( t = \tan(0) = 0 \). - When \( \theta = \frac{\pi}{4} \), \( t = \tan\left(\frac{\pi}{4}\right) = 1 \). Thus, we have: \[ I_8 + I_6 = \int_0^1 t^6 \, dt. \] ### Step 5: Evaluate the integral Now we can evaluate the integral: \[ \int_0^1 t^6 \, dt = \left[ \frac{t^7}{7} \right]_0^1 = \frac{1^7}{7} - \frac{0^7}{7} = \frac{1}{7}. \] ### Conclusion Thus, we find that: \[ I_8 + I_6 = \frac{1}{7}. \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|374 Videos
  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//8) cos^(3)4 theta d theta=

If I_(n)=int_(0)^(pi//4)tan^(n)x dx , where n ge 2 , then : I_(n-2)+I_(n)=

Let I_(n)=int_(0)^(pi//4)tan^(n)xdx,n in N , Then

If l_(n)=int_(0)^(pi//4) tan^(n)x dx, n in N "then" I_(n+2)+I_(n) equals

If I_(n)=int_(0)^((pi)/(4))tan^(n)theta then I_(8)+I_(6) equals

If I_(n)=int_(0)^(pi//4)tan^(n)x dx, then 7(I_(6)+I_(8))=