Home
Class 12
MATHS
int(0)^(pi) e^(x) sin 2 x dx=...

`int_(0)^(pi) e^(x) sin 2 x dx=`

A

`2/5 ( 1-e^(pi))`

B

`2/5 (e^(pi-1))`

C

`1/5 (1-e^(pi))`

D

`1/5 (e^(pi)-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\pi} e^x \sin(2x) \, dx \), we will use integration by parts. ### Step 1: Set up the integration by parts We will use the formula for integration by parts: \[ \int u \, dv = uv - \int v \, du \] Let: - \( u = \sin(2x) \) (so \( du = 2 \cos(2x) \, dx \)) - \( dv = e^x \, dx \) (so \( v = e^x \)) ### Step 2: Apply integration by parts Using the integration by parts formula: \[ I = \left[ \sin(2x) e^x \right]_{0}^{\pi} - \int_{0}^{\pi} e^x (2 \cos(2x)) \, dx \] Calculating the first term: \[ \left[ \sin(2x) e^x \right]_{0}^{\pi} = \sin(2\pi) e^{\pi} - \sin(0) e^{0} = 0 - 0 = 0 \] Thus, we have: \[ I = -2 \int_{0}^{\pi} e^x \cos(2x) \, dx \] ### Step 3: Solve the new integral Let \( J = \int_{0}^{\pi} e^x \cos(2x) \, dx \). We will again use integration by parts: Let: - \( u = \cos(2x) \) (so \( du = -2 \sin(2x) \, dx \)) - \( dv = e^x \, dx \) (so \( v = e^x \)) Now applying integration by parts: \[ J = \left[ \cos(2x) e^x \right]_{0}^{\pi} - \int_{0}^{\pi} e^x (-2 \sin(2x)) \, dx \] Calculating the first term: \[ \left[ \cos(2x) e^x \right]_{0}^{\pi} = \cos(2\pi) e^{\pi} - \cos(0) e^{0} = 1 \cdot e^{\pi} - 1 \cdot 1 = e^{\pi} - 1 \] Thus, we have: \[ J = (e^{\pi} - 1) + 2 \int_{0}^{\pi} e^x \sin(2x) \, dx = (e^{\pi} - 1) + 2I \] ### Step 4: Substitute back into the equation Now we have: \[ I = -2J \] Substituting for \( J \): \[ I = -2 \left( (e^{\pi} - 1) + 2I \right) \] Expanding this gives: \[ I = -2(e^{\pi} - 1) - 4I \] Rearranging terms: \[ I + 4I = -2(e^{\pi} - 1) \] \[ 5I = -2(e^{\pi} - 1) \] Thus: \[ I = \frac{-2(e^{\pi} - 1)}{5} \] This simplifies to: \[ I = \frac{2 - 2e^{\pi}}{5} \] ### Final Answer \[ \int_{0}^{\pi} e^x \sin(2x) \, dx = \frac{2 - 2e^{\pi}}{5} \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|374 Videos
  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//4)e^(x)sin x dx =

What is int_(0)^(pi)e^(x) sin x dx equal to ?

int_(0)^(pi//2) e^(x) (sin x + cos x) dx

int_(0)^(pi//2)sin x.sin 2x dx=

solve int_(0)^( pi/2)e^(sin x)dx

int_(0)^( pi/2)e^(x)(sin x-cos x)dx

If int_(0)^(pi) x f (sin x) dx = A int _(0)^(pi//2) f(sin x) dx , then A is equal to

int_(0)^(pi//2) x sin x cos x dx

int_0^(pi/2) sin x sin 2x dx