Home
Class 12
MATHS
int(0)^(1) x^(3) tan^(-1) x " "dx =...

`int_(0)^(1) x^(3) tan^(-1) x " "dx =`

A

`1/3`

B

`1/6`

C

3

D

6

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{1} x^3 \tan^{-1}(x) \, dx \), we will use the method of integration by parts. ### Step 1: Identify \( u \) and \( dv \) We will choose: - \( u = \tan^{-1}(x) \) (which we will differentiate) - \( dv = x^3 \, dx \) (which we will integrate) ### Step 2: Differentiate \( u \) and Integrate \( dv \) Now, we compute \( du \) and \( v \): - Differentiate \( u \): \[ du = \frac{1}{1+x^2} \, dx \] - Integrate \( dv \): \[ v = \int x^3 \, dx = \frac{x^4}{4} \] ### Step 3: Apply Integration by Parts Formula Using the integration by parts formula: \[ \int u \, dv = uv - \int v \, du \] we substitute our values: \[ I = \left[ \tan^{-1}(x) \cdot \frac{x^4}{4} \right]_{0}^{1} - \int_{0}^{1} \frac{x^4}{4} \cdot \frac{1}{1+x^2} \, dx \] ### Step 4: Evaluate the Boundary Term Now we evaluate the boundary term: \[ \left[ \tan^{-1}(x) \cdot \frac{x^4}{4} \right]_{0}^{1} = \left( \tan^{-1}(1) \cdot \frac{1^4}{4} \right) - \left( \tan^{-1}(0) \cdot \frac{0^4}{4} \right) \] Calculating this gives: \[ = \left( \frac{\pi}{4} \cdot \frac{1}{4} \right) - 0 = \frac{\pi}{16} \] ### Step 5: Simplify the Integral Now we need to simplify the remaining integral: \[ I = \frac{\pi}{16} - \frac{1}{4} \int_{0}^{1} \frac{x^4}{1+x^2} \, dx \] We can rewrite \( \frac{x^4}{1+x^2} \) as: \[ \frac{x^4}{1+x^2} = \frac{x^4}{1+x^2} = x^2 - \frac{x^2}{1+x^2} \] Thus, we can split the integral: \[ \int_{0}^{1} \frac{x^4}{1+x^2} \, dx = \int_{0}^{1} x^2 \, dx - \int_{0}^{1} \frac{x^2}{1+x^2} \, dx \] Calculating these integrals: 1. \( \int_{0}^{1} x^2 \, dx = \left[ \frac{x^3}{3} \right]_{0}^{1} = \frac{1}{3} \) 2. For \( \int_{0}^{1} \frac{x^2}{1+x^2} \, dx \), we can use substitution or recognize it as: \[ \int_{0}^{1} \frac{x^2}{1+x^2} \, dx = \int_{0}^{1} \left( 1 - \frac{1}{1+x^2} \right) \, dx = 1 - \frac{\pi}{4} \] ### Step 6: Combine Results Thus, we have: \[ \int_{0}^{1} \frac{x^4}{1+x^2} \, dx = \frac{1}{3} - \left( 1 - \frac{\pi}{4} \right) = \frac{1}{3} - 1 + \frac{\pi}{4} = \frac{\pi}{4} - \frac{2}{3} \] ### Step 7: Substitute Back into \( I \) Substituting back into our expression for \( I \): \[ I = \frac{\pi}{16} - \frac{1}{4} \left( \frac{\pi}{4} - \frac{2}{3} \right) \] This simplifies to: \[ I = \frac{\pi}{16} - \frac{\pi}{16} + \frac{1}{6} = \frac{1}{6} \] ### Final Answer Thus, the value of the integral is: \[ \boxed{\frac{1}{6}} \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|374 Videos
  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(1) x tan^(-1) x " "dx =

int_(0)^(1)x tan^(-1)x dx=

int _(0) ^(1) x tan ^(-1) x dx =

int_(0)^(1)x cos(tan^(-1)x)dx

int _(0)^(1) (tan ^(-1))/(x ) dx =

int x^(3)(tan^(-1)x)dx

int_(0)^(1)(tan^(-1)x)/(x)dx=

int_(0)^(1)(tan^(-1)x)/(x)dx=

If int_(0)^(1) tan^(-1) x dx = p , then the value of int_(0)^(1) tan^(-1)((1-x)/(1 +x)) dx is