Home
Class 12
MATHS
int(0)^(1)tan ^(-1) (x/sqrt(1-x^(2)))dx=...

`int_(0)^(1)tan ^(-1) (x/sqrt(1-x^(2)))dx=`

A

`pi/2-1`

B

`1-pi/2`

C

`pi/2-2`

D

`2-pi/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{0}^{1} \tan^{-1} \left( \frac{x}{\sqrt{1-x^2}} \right) dx, \] we can use a trigonometric substitution. Let's follow the steps outlined in the video transcript. ### Step 1: Substitution Let \( x = \sin \theta \). Then, we differentiate both sides to find \( dx \): \[ dx = \cos \theta \, d\theta. \] ### Step 2: Change the limits of integration When \( x = 0 \), \( \theta = 0 \) and when \( x = 1 \), \( \theta = \frac{\pi}{2} \). Thus, the limits change from \( 0 \) to \( \frac{\pi}{2} \). ### Step 3: Substitute in the integral Substituting \( x \) and \( dx \) into the integral gives: \[ I = \int_{0}^{\frac{\pi}{2}} \tan^{-1} \left( \frac{\sin \theta}{\sqrt{1 - \sin^2 \theta}} \right) \cos \theta \, d\theta. \] Since \( \sqrt{1 - \sin^2 \theta} = \cos \theta \), we can simplify the argument of the arctangent: \[ I = \int_{0}^{\frac{\pi}{2}} \tan^{-1} \left( \frac{\sin \theta}{\cos \theta} \right) \cos \theta \, d\theta. \] ### Step 4: Simplify the arctangent The expression \( \frac{\sin \theta}{\cos \theta} \) is simply \( \tan \theta \). Therefore, we have: \[ I = \int_{0}^{\frac{\pi}{2}} \tan^{-1} (\tan \theta) \cos \theta \, d\theta. \] Since \( \tan^{-1} (\tan \theta) = \theta \) for \( \theta \in [0, \frac{\pi}{2}] \), we can rewrite the integral as: \[ I = \int_{0}^{\frac{\pi}{2}} \theta \cos \theta \, d\theta. \] ### Step 5: Integration by parts Now, we apply integration by parts. Let: - \( u = \theta \) \(\Rightarrow du = d\theta\), - \( dv = \cos \theta \, d\theta \) \(\Rightarrow v = \sin \theta\). Using the integration by parts formula \( \int u \, dv = uv - \int v \, du \), we have: \[ I = \left[ \theta \sin \theta \right]_{0}^{\frac{\pi}{2}} - \int_{0}^{\frac{\pi}{2}} \sin \theta \, d\theta. \] ### Step 6: Evaluate the boundary term Evaluating the boundary term: \[ \left[ \theta \sin \theta \right]_{0}^{\frac{\pi}{2}} = \frac{\pi}{2} \cdot \sin\left(\frac{\pi}{2}\right) - 0 \cdot \sin(0) = \frac{\pi}{2} - 0 = \frac{\pi}{2}. \] ### Step 7: Evaluate the remaining integral Now, we need to evaluate: \[ \int_{0}^{\frac{\pi}{2}} \sin \theta \, d\theta = -\cos \theta \bigg|_{0}^{\frac{\pi}{2}} = -\left(0 - (-1)\right) = 1. \] ### Step 8: Combine results Putting it all together, we have: \[ I = \frac{\pi}{2} - 1. \] Thus, the final result is: \[ \int_{0}^{1} \tan^{-1} \left( \frac{x}{\sqrt{1-x^2}} \right) dx = \frac{\pi}{2} - 1. \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|374 Videos
  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos

Similar Questions

Explore conceptually related problems

Evaluate : int_(0)^(1) (-1)/(sqrt(1-x^(2)) )dx

int_(0)^(1)tan (2x-1)dx=

int_(0)^(1) tan ^(-1) ((2x-1)/(1+x-x^(2)))dx =

int_(0)^(1)(x)/(sqrt(1-x^(2)))dx=

int_(0)^(sqrt(3))tan^(-1)((2x)/(1-x^(2)))dx

int_(0)^(1)(sqrt(tan^(-1)x))/((1+x^(2)))dx

int_(0)^(1)(tan^(-1)x)/(1+x^(2))dx

int_(0)^(1/sqrt2)(dx)/(sqrt(1-x^(2)))

int_(0)^(1) (1)/(sqrt(1-x^(2)))dx