Home
Class 12
MATHS
int(0)^(pi//2) sin 2x tan^(-1) (sinx)dx ...

`int_(0)^(pi//2) sin 2x tan^(-1) (sinx)dx = `

A

`pi/2-1`

B

`1-pi/2`

C

`pi/4-1`

D

`1-pi/4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\frac{\pi}{2}} \sin(2x) \tan^{-1}(\sin x) \, dx \), we will follow these steps: ### Step 1: Rewrite the Integral Using the double angle identity, we can rewrite \( \sin(2x) \) as \( 2 \sin(x) \cos(x) \): \[ I = \int_{0}^{\frac{\pi}{2}} 2 \sin(x) \cos(x) \tan^{-1}(\sin x) \, dx \] ### Step 2: Change the Order of Multiplication We can rearrange the terms in the integral: \[ I = \int_{0}^{\frac{\pi}{2}} 2 \sin(x) \tan^{-1}(\sin x) \cos(x) \, dx \] ### Step 3: Substitution Let \( t = \sin(x) \). Then, \( dt = \cos(x) \, dx \). The limits change from \( x = 0 \) to \( x = \frac{\pi}{2} \) which corresponds to \( t = 0 \) to \( t = 1 \): \[ I = \int_{0}^{1} 2t \tan^{-1}(t) \, dt \] ### Step 4: Integration by Parts Now we will use integration by parts. Let: - \( u = \tan^{-1}(t) \) so that \( du = \frac{1}{1+t^2} \, dt \) - \( dv = 2t \, dt \) so that \( v = t^2 \) Using integration by parts, we have: \[ I = \left[ t^2 \tan^{-1}(t) \right]_{0}^{1} - \int_{0}^{1} t^2 \cdot \frac{1}{1+t^2} \, dt \] ### Step 5: Evaluate the Boundary Term Evaluating the boundary term: \[ \left[ t^2 \tan^{-1}(t) \right]_{0}^{1} = 1^2 \tan^{-1}(1) - 0^2 \tan^{-1}(0) = \frac{\pi}{4} - 0 = \frac{\pi}{4} \] ### Step 6: Simplify the Remaining Integral Now we need to evaluate: \[ \int_{0}^{1} \frac{t^2}{1+t^2} \, dt \] This can be simplified as: \[ \int_{0}^{1} \left( 1 - \frac{1}{1+t^2} \right) dt = \int_{0}^{1} dt - \int_{0}^{1} \frac{1}{1+t^2} dt \] Calculating these integrals: \[ \int_{0}^{1} dt = 1 \] \[ \int_{0}^{1} \frac{1}{1+t^2} dt = \tan^{-1}(t) \bigg|_{0}^{1} = \frac{\pi}{4} \] ### Step 7: Combine Results Thus, \[ \int_{0}^{1} \frac{t^2}{1+t^2} \, dt = 1 - \frac{\pi}{4} \] Putting it all together: \[ I = \frac{\pi}{4} - \left( 1 - \frac{\pi}{4} \right) = \frac{\pi}{4} - 1 + \frac{\pi}{4} = \frac{\pi}{2} - 1 \] ### Final Answer The value of the integral is: \[ \int_{0}^{\frac{\pi}{2}} \sin(2x) \tan^{-1}(\sin x) \, dx = \frac{\pi}{2} - 1 \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|374 Videos
  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi/2) sin 2x tan^(-1) (sin x) dx

Evaluate: int_0^(pi/2) (sin2x tan^(-1)(sinx))dx

Evaluate the definite integrals int_(0)^((pi)/(2))sin2x tan^(-1)(sin x)dx

int_(0)^(pi//2) sin 2 x (tan x) dx=

int_(0)^(pi/2) sin^(-1)(sin x)dx

int_(0)^(pi//2)sinx sin2x sin3x sin 4x dx=

int_(0)^(pi//2)sin x.sin 2x dx=

Evaluate: int_(0)^((pi)/(2))2sin x cos x tan^(-1)(sin x)dx

int_(0)^(pi//2) sin 2x log (tan x) dx is equal to

int_(0)^( pi/2)(1+sin x)^(1/2)dx