Home
Class 12
MATHS
int(e)^(e^(2)) (1/logx-1/((logx)^(2)))dx...

`int_(e)^(e^(2)) (1/logx-1/((logx)^(2)))dx=`

A

`(e(e-1))/2`

B

`(-e(e-1))/2`

C

`(e(e-2))/2`

D

`(-e(e-2))/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int_{e}^{e^2} \left( \frac{1}{\log x} - \frac{1}{(\log x)^2} \right) dx, \] we can break it down into two separate integrals: \[ \int_{e}^{e^2} \frac{1}{\log x} \, dx - \int_{e}^{e^2} \frac{1}{(\log x)^2} \, dx. \] ### Step 1: Solve the first integral \(\int_{e}^{e^2} \frac{1}{\log x} \, dx\) To solve this integral, we can use integration by parts. Let: - \( u = \log x \) \(\Rightarrow du = \frac{1}{x} dx\) - \( dv = dx \) \(\Rightarrow v = x\) Using integration by parts: \[ \int u \, dv = uv - \int v \, du, \] we have: \[ \int \frac{1}{\log x} \, dx = x \log x - \int x \cdot \frac{1}{x \log x} \, dx = x \log x - \int \frac{1}{\log x} \, dx. \] However, we need to evaluate it from \(e\) to \(e^2\). So, we directly compute: \[ \int_{e}^{e^2} \frac{1}{\log x} \, dx = \left[ x \log x \right]_{e}^{e^2}. \] Calculating the limits: \[ = \left( e^2 \cdot \log(e^2) \right) - \left( e \cdot \log e \right) = e^2 \cdot 2 - e \cdot 1 = 2e^2 - e. \] ### Step 2: Solve the second integral \(\int_{e}^{e^2} \frac{1}{(\log x)^2} \, dx\) For the second integral, we can again use integration by parts. Let: - \( u = \frac{1}{\log x} \) \(\Rightarrow du = -\frac{1}{(\log x)^2} \cdot \frac{1}{x} dx\) - \( dv = dx \) \(\Rightarrow v = x\) Using integration by parts: \[ \int u \, dv = uv - \int v \, du, \] we have: \[ \int \frac{1}{(\log x)^2} \, dx = x \cdot \frac{1}{\log x} - \int x \left(-\frac{1}{(\log x)^2} \cdot \frac{1}{x}\right) dx = \frac{x}{\log x} + \int \frac{1}{(\log x)^2} \, dx. \] Evaluating from \(e\) to \(e^2\): \[ \int_{e}^{e^2} \frac{1}{(\log x)^2} \, dx = \left[ \frac{x}{\log x} \right]_{e}^{e^2}. \] Calculating the limits: \[ = \left( \frac{e^2}{\log(e^2)} \right) - \left( \frac{e}{\log e} \right) = \frac{e^2}{2} - e. \] ### Step 3: Combine the results Now we combine the results of both integrals: \[ \int_{e}^{e^2} \left( \frac{1}{\log x} - \frac{1}{(\log x)^2} \right) dx = \left( 2e^2 - e \right) - \left( \frac{e^2}{2} - e \right). \] Simplifying this: \[ = 2e^2 - e - \frac{e^2}{2} + e = 2e^2 - \frac{e^2}{2} = \frac{4e^2}{2} - \frac{e^2}{2} = \frac{3e^2}{2}. \] ### Final Answer Thus, the value of the integral is: \[ \frac{3e^2}{2}. \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|374 Videos
  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(e^(2)){(1)/((logx))-(1)/((logx)^(2))}dx

If int _(2)^(e) (1/(logx)-1/(logx)^(2))dx = a + b/(log2) , then

int(logx)^(2)dx=?

int1/(x(1-logx)^(2))dx=

int_(1)^(e){((logx-1))/(1+(logx)^(2))}^(2) dx is equal to

The value of int_(1)^(e^(2)) (dx)/(x(1+logx)^(2)) is

int[(1)/(logx)-(1)/((logx)^(2))]dx=

int(log(x//e))/((logx)^(2))dx=