Home
Class 12
MATHS
int(1) ^(3) dx/(x(1+x^(2)))=...

`int_(1) ^(3) dx/(x(1+x^(2)))=`

A

`1/2 log (5/9)`

B

`1/2 log (9/5)`

C

`1/2 log (10/9)`

D

`1/2 log (9/10)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|374 Videos
  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos

Similar Questions

Explore conceptually related problems

int_(1)^(3)(dx)/(x^(2)(x+1))

int_(1)^(3) (dx)/(x^(2)(x+1))=(2)/(3)+log .(2)/(3)

Prove that int_(1)^(3)(dx)/(x^(2)(x+1))=(2)/(3)+(log2)/(3)

int_(1)^(3)(dx)/(x^(2)(x+1))=(2)/(3)+(log2)/(3)

int_(1)^(3)(1)/(x+x^(2))dx=

int_(1)^(3)(1)/(x+x^(2))dx=

int_(1) ^(2) dx/((x+1)(x+3)) =

int_(2)^(3)(dx)/(x^(2)-1)

int_(1)^(3)(dx)/(x^(2)+[x]^(2)+1-2x[x]) ( where [x] is the largest integer not exceeding x )

int_ (1) ^ (3) (1-2x) dx