Home
Class 12
MATHS
int(0)^(pi//2) (sin x cos x) / ((1 + 2 s...

`int_(0)^(pi//2) (sin x cos x) / ((1 + 2 sin x ) ( 1+ sin x))dx = `

A

`1/2 log (3/4)`

B

`1/2 log (4/3)`

C

`1/2 log (3/2)`

D

`1/2 log (2/3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\sin x \cos x}{(1 + 2 \sin x)(1 + \sin x)} \, dx, \] we can follow these steps: ### Step 1: Simplify the Integral We know that \(\sin x \cos x = \frac{1}{2} \sin(2x)\). Thus, we can rewrite the integral as: \[ I = \frac{1}{2} \int_{0}^{\frac{\pi}{2}} \frac{\sin(2x)}{(1 + 2 \sin x)(1 + \sin x)} \, dx. \] ### Step 2: Use Substitution Let \(t = \sin x\). Then, \(dt = \cos x \, dx\) and when \(x = 0\), \(t = 0\), and when \(x = \frac{\pi}{2}\), \(t = 1\). The integral becomes: \[ I = \frac{1}{2} \int_{0}^{1} \frac{t}{(1 + 2t)(1 + t)} \, dt. \] ### Step 3: Partial Fraction Decomposition We can decompose the integrand using partial fractions: \[ \frac{t}{(1 + 2t)(1 + t)} = \frac{A}{1 + 2t} + \frac{B}{1 + t}. \] Multiplying through by the denominator \((1 + 2t)(1 + t)\) gives: \[ t = A(1 + t) + B(1 + 2t). \] Expanding and combining like terms, we get: \[ t = A + At + B + 2Bt \implies t = (A + B) + (A + 2B)t. \] ### Step 4: Solve for Coefficients Equating coefficients, we have: 1. \(A + B = 0\) 2. \(A + 2B = 1\) From the first equation, \(B = -A\). Substituting into the second equation: \[ A - 2A = 1 \implies -A = 1 \implies A = -1, \quad B = 1. \] Thus, we can rewrite the integral as: \[ I = \frac{1}{2} \int_{0}^{1} \left( \frac{-1}{1 + 2t} + \frac{1}{1 + t} \right) dt. \] ### Step 5: Integrate Each Term Now we can integrate each term separately: \[ I = \frac{1}{2} \left( -\int_{0}^{1} \frac{1}{1 + 2t} dt + \int_{0}^{1} \frac{1}{1 + t} dt \right). \] Calculating the first integral: \[ \int \frac{1}{1 + 2t} dt = \frac{1}{2} \ln(1 + 2t) + C. \] Evaluating from \(0\) to \(1\): \[ \left[ \frac{1}{2} \ln(1 + 2t) \right]_{0}^{1} = \frac{1}{2} \ln(3) - \frac{1}{2} \ln(1) = \frac{1}{2} \ln(3). \] Calculating the second integral: \[ \int \frac{1}{1 + t} dt = \ln(1 + t) + C. \] Evaluating from \(0\) to \(1\): \[ \left[ \ln(1 + t) \right]_{0}^{1} = \ln(2) - \ln(1) = \ln(2). \] ### Step 6: Combine Results Putting it all together: \[ I = \frac{1}{2} \left( -\frac{1}{2} \ln(3) + \ln(2) \right) = \frac{1}{2} \left( \ln(2) - \frac{1}{2} \ln(3) \right). \] ### Step 7: Final Simplification This can be simplified to: \[ I = \frac{1}{2} \ln\left(\frac{2}{\sqrt{3}}\right). \] ### Final Answer Thus, the value of the integral is: \[ I = \frac{1}{2} \ln\left(\frac{2}{\sqrt{3}}\right). \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|374 Videos
  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2) x sin x cos x dx

int_(0)^( pi/2)((sin x cos x) /(1+sin 4x ))dx

int_(0)^(pi//2)(sin x - cos x)/(1-sin x cos x)dx=

int_(0)^( pi/2)sin^(2)x cos x dx

int_(0)^( pi/2)(sin x-cos x)/(1+sin x*cos x)*dx

int_(0)^(pi//2)sin x.sin 2x dx=

int_(0)^( pi/2)(sin x)/(1+cos x)dx

int_(0)^(pi/2)(sin^(2)x*cos x)dx=

int_(0)^(pi//2)(sin x.cos x)/(1+sin^(4)x)dx=