Home
Class 12
MATHS
Prove that int(a)^(b)(f(x))/(f(x)+f(a+...

Prove that
`int_(a)^(b)(f(x))/(f(x)+f(a+b-x)) dx=(b-a)/(2)`.

A

`(b-a)/2`

B

`(b-a)/4`

C

`(b+a)/2`

D

`(b+a) /4`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|374 Videos
  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos

Similar Questions

Explore conceptually related problems

int_(a)^( Prove that: )(f(x))/(f(x)+f(a+b-x))dx=(b-a)/(2)

Prove that int_(a)^(b) f(x) dx= int_(a)^(b) f(a+b-x) dx

int_(a)^(b)f(x)dx=int_(a)^(b)f(a+b-x)dx. Hence evaluate : int_(a)^(b)(f(x))/(f(x)+f(a+b-x))dx.

If int_(a)^(b)(f(x))/(f(x)+f(a+b-x))dx=10 , then

int _(a) ^(b) f (x) dx =

Prove that int_(a)^(b)f(x)dx=(b-a)int_(0)^(1)f((b-a)x+a)dx

Prove that int_(0)^(2a)f(x)dx=int_(a)^(a)[f(a-x)+f(a+x)]dx

int_(a + c)^(b+c) f(x)dx=

If f(a+b-x)=f(x), then prove that int_(a)^(b)xf(x)dx=(a+b)/(2)int_(a)^(b)f(x)dx

If int_(a)^(b)(f(a+b-x))/(f(x)+f(a+b-x))dx=10 , then (a, b) can have the values