Home
Class 12
MATHS
int(2)^(7) sqrt(x)/ (sqrt(x) + sqrt(9-x)...

`int_(2)^(7) sqrt(x)/ (sqrt(x) + sqrt(9-x))dx=`

A

`9/2`

B

`(-9)/2`

C

`5/2`

D

`(-5)/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{2}^{7} \frac{\sqrt{x}}{\sqrt{x} + \sqrt{9 - x}} \, dx, \] we can use a property of definite integrals. The property states that if \[ I = \int_{a}^{b} f(x) \, dx, \] then \[ I = \int_{a}^{b} f(a + b - x) \, dx. \] In our case, \( a = 2 \) and \( b = 7 \), so \( a + b = 9 \). We can rewrite the integral as: \[ I = \int_{2}^{7} f(9 - x) \, dx, \] where \[ f(x) = \frac{\sqrt{x}}{\sqrt{x} + \sqrt{9 - x}}. \] Now, we need to find \( f(9 - x) \): \[ f(9 - x) = \frac{\sqrt{9 - x}}{\sqrt{9 - x} + \sqrt{x}}. \] Notice that \[ f(9 - x) = \frac{\sqrt{9 - x}}{\sqrt{9 - x} + \sqrt{x}} = \frac{\sqrt{9 - x}}{\sqrt{x} + \sqrt{9 - x}}. \] Now we can express \( I \) as: \[ I = \int_{2}^{7} f(9 - x) \, dx = \int_{2}^{7} \frac{\sqrt{9 - x}}{\sqrt{x} + \sqrt{9 - x}} \, dx. \] Now we have two expressions for \( I \): 1. \( I = \int_{2}^{7} \frac{\sqrt{x}}{\sqrt{x} + \sqrt{9 - x}} \, dx \) 2. \( I = \int_{2}^{7} \frac{\sqrt{9 - x}}{\sqrt{x} + \sqrt{9 - x}} \, dx \) Adding these two equations gives: \[ 2I = \int_{2}^{7} \left( \frac{\sqrt{x}}{\sqrt{x} + \sqrt{9 - x}} + \frac{\sqrt{9 - x}}{\sqrt{x} + \sqrt{9 - x}} \right) \, dx. \] The expression inside the integral simplifies to: \[ \frac{\sqrt{x} + \sqrt{9 - x}}{\sqrt{x} + \sqrt{9 - x}} = 1. \] Thus, we have: \[ 2I = \int_{2}^{7} 1 \, dx. \] Calculating the integral: \[ \int_{2}^{7} 1 \, dx = [x]_{2}^{7} = 7 - 2 = 5. \] So we have: \[ 2I = 5 \implies I = \frac{5}{2}. \] Thus, the final answer is: \[ \int_{2}^{7} \frac{\sqrt{x}}{\sqrt{x} + \sqrt{9 - x}} \, dx = \frac{5}{2}. \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|374 Videos
  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos

Similar Questions

Explore conceptually related problems

Prove that : int_(2)^(7) (sqrt(x))/(sqrt(9-x)+sqrt(x))dx=(5)/(2)

int _(2) ^(7) (sqrtx)/( sqrtx + sqrt ( 9-x)) dx =

int_(0)^(7)(sqrt(7-x))/(sqrt(x)+sqrt(7-x))dx = (a) 1 (b) (7)/(2) (c) 5 (d) 7

int_(4)^(9)sqrt(x)dx

Evaluate ":int_(1)^(4)(sqrt(9-x))/(sqrt(4+x)+sqrt(9-x))dx

int_(0)^(a)(sqrt(x))/((sqrt(x)+sqrt(a-x)))dx=(a)/(2)

int_(a)^(b)(sqrt(x))/(sqrt(x)+sqrt(a+b-x))dx= . . . .

int(sqrt(x))/(sqrt(x)+sqrt(6-x))dx

int_(3)^(6)(sqrt(x))/(sqrt(9-x)+sqrt(x))dx is

int_(a)^(b)(sqrt(x))/(sqrt(x)+sqrt(a)+b-x) =dx=......