Home
Class 12
MATHS
int(0)^(2pi) (sin 2 theta)/(a-b cos 2 th...

`int_(0)^(2pi) (sin 2 theta)/(a-b cos 2 theta )d theta = `

A

0

B

2

C

`pi/4`

D

`pi/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{0}^{2\pi} \frac{\sin 2\theta}{a - b \cos 2\theta} \, d\theta, \] we can use a property of definite integrals. ### Step 1: Use the property of definite integrals We know that \[ \int_{0}^{a} f(x) \, dx = \int_{0}^{a} f(a - x) \, dx. \] In our case, we will substitute \( \theta \) with \( 2\pi - \theta \): \[ I = \int_{0}^{2\pi} \frac{\sin(2(2\pi - \theta))}{a - b \cos(2(2\pi - \theta))} \, d\theta. \] ### Step 2: Simplify the integral Now, simplify the integrand: \[ \sin(2(2\pi - \theta)) = \sin(4\pi - 2\theta) = -\sin(2\theta), \] and \[ \cos(2(2\pi - \theta)) = \cos(4\pi - 2\theta) = \cos(2\theta). \] Thus, we can rewrite the integral as: \[ I = \int_{0}^{2\pi} \frac{-\sin 2\theta}{a - b \cos 2\theta} \, d\theta. \] ### Step 3: Combine the two integrals Now we have two expressions for \( I \): 1. \( I = \int_{0}^{2\pi} \frac{\sin 2\theta}{a - b \cos 2\theta} \, d\theta \) 2. \( I = \int_{0}^{2\pi} \frac{-\sin 2\theta}{a - b \cos 2\theta} \, d\theta \) Adding these two equations gives: \[ 2I = \int_{0}^{2\pi} \frac{\sin 2\theta - \sin 2\theta}{a - b \cos 2\theta} \, d\theta = \int_{0}^{2\pi} 0 \, d\theta = 0. \] ### Step 4: Conclusion Thus, we find that \[ 2I = 0 \implies I = 0. \] Therefore, the value of the integral is \[ \int_{0}^{2\pi} \frac{\sin 2\theta}{a - b \cos 2\theta} \, d\theta = 0. \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • CONTINUITY

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|374 Videos
  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos

Similar Questions

Explore conceptually related problems

[ (A) 8/5, (B) 5/8int_(0)^(2 pi)(sin2 theta)/(a-b cos theta)d theta equals- [ (A) 1, (B) 2, (C) pi/4]]

int _(0) ^(pi) sin ^(2) theta cos theta d theta

Knowledge Check

  • The value of the integral int_(0)^(2pi)(sin2 theta)/(a-b cos theta)d theta when a gt b gt 0 , is

    A
    1
    B
    `pi`
    C
    `pi//2`
    D
    0
  • int_(0)^(pi//2) (sin^(2)theta)/ (1+cos theta)^(2) d theta =

    A
    `pi/2+2`
    B
    `pi/2-2`
    C
    `2-pi/2`
    D
    `-2-pi/2`
  • The value of int_(0)^(pi//2) sqrt( sin 2 theta) sin theta d theta is

    A
    `1`
    B
    `0`
    C
    `pi//2`
    D
    `pi//4`
  • Similar Questions

    Explore conceptually related problems

    int_ (0) ^ (2 pi) e ^ (cos theta) cos (sin theta) d theta

    If I_(n)=int_(0)^(2 pi)(cos(n theta))/(cos theta)d(theta), where n in N then.

    The value of int_(0)^(pi//2)ln((sin^(2)theta)/(cos^(3)theta))d theta is

    int_(0)^( pi/2) sin^(2)theta cos theta d theta

    Let the be an integrable function defined on [0,a] if I_(1)=int_(pi//2)^(pi//2) cos theta f(sin theta cos ^(2) theta)d theta and I_(2)=int_(0)^(pi//2)sin 2 theta f(sin theta cos ^(2) theta)d theta then