Home
Class 12
MATHS
int(0) ^(pi//2) cos^(2) theta d theta =...

`int_(0) ^(pi//2) cos^(2) theta d theta =`

A

0

B

2

C

`pi/4`

D

`pi/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{0}^{\frac{\pi}{2}} \cos^2 \theta \, d\theta \), we can use a clever technique involving symmetry and the properties of trigonometric functions. Here’s a step-by-step breakdown of the solution: ### Step 1: Define the Integral Let \[ I = \int_{0}^{\frac{\pi}{2}} \cos^2 \theta \, d\theta \] ### Step 2: Use the Identity for Cosine We can use the identity \( \cos^2 \theta = \cos^2\left(\frac{\pi}{2} - \theta\right) \). Therefore, we can rewrite the integral as: \[ I = \int_{0}^{\frac{\pi}{2}} \cos^2\left(\frac{\pi}{2} - \theta\right) \, d\theta \] Since \( \cos\left(\frac{\pi}{2} - \theta\right) = \sin \theta \), we have: \[ I = \int_{0}^{\frac{\pi}{2}} \sin^2 \theta \, d\theta \] ### Step 3: Add the Two Integrals Now, we can add the two expressions for \( I \): \[ 2I = \int_{0}^{\frac{\pi}{2}} \cos^2 \theta \, d\theta + \int_{0}^{\frac{\pi}{2}} \sin^2 \theta \, d\theta \] This simplifies to: \[ 2I = \int_{0}^{\frac{\pi}{2}} \left(\cos^2 \theta + \sin^2 \theta\right) \, d\theta \] ### Step 4: Use the Pythagorean Identity Using the Pythagorean identity \( \cos^2 \theta + \sin^2 \theta = 1 \), we can simplify the integral: \[ 2I = \int_{0}^{\frac{\pi}{2}} 1 \, d\theta \] ### Step 5: Evaluate the Integral Now, we can evaluate the integral: \[ 2I = \left[ \theta \right]_{0}^{\frac{\pi}{2}} = \frac{\pi}{2} - 0 = \frac{\pi}{2} \] ### Step 6: Solve for \( I \) Now, we can solve for \( I \): \[ I = \frac{\pi}{4} \] ### Final Answer Thus, the value of the integral is: \[ \int_{0}^{\frac{\pi}{2}} \cos^2 \theta \, d\theta = \frac{\pi}{4} \] ---
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|374 Videos
  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//8) cos^(3)4 theta d theta=

int_(0)^( pi/2)cos^(9)theta d theta

int_(0)^( pi/2)cos^(9)theta d theta

int_(0)^( pi/2)cos^(3)theta d theta

int_(0)^( pi/2)sin^(2)theta d theta=

int_(0)^( pi/2)sin^(2)theta d theta=

=4int_(0)^( pi&sol2)cos^(2)theta d theta

int_(0)^( pi/2)sin^(3)theta d theta=

Evaluate the following : int_(0)^(pi//2)sin theta d theta

int_(0)^( pi/2) sin^(2)theta cos theta d theta