Home
Class 12
MATHS
int(0)^(pi//2) sqrt(sin x)/(sqrt(sin x )...

`int_(0)^(pi//2) sqrt(sin x)/(sqrt(sin x ) + sqrt( cos x)) dx = `

A

`(3pi)/2`

B

`(3pi)/4`

C

`pi/2`

D

`pi/4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} \, dx, \] we can use the property of definite integrals, which states that \[ \int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(a + b - x) \, dx. \] In our case, \( a = 0 \) and \( b = \frac{\pi}{2} \). Thus, we can rewrite the integral as follows: 1. **Substituting \( x \) with \( \frac{\pi}{2} - x \)**: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\sin\left(\frac{\pi}{2} - x\right)}}{\sqrt{\sin\left(\frac{\pi}{2} - x\right)} + \sqrt{\cos\left(\frac{\pi}{2} - x\right)}} \, dx. \] Using the identities \( \sin\left(\frac{\pi}{2} - x\right) = \cos x \) and \( \cos\left(\frac{\pi}{2} - x\right) = \sin x \), we can rewrite the integral: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} \, dx. \] 2. **Adding the two expressions for \( I \)**: Now we have two expressions for \( I \): \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} \, dx, \] \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} \, dx. \] Adding these two equations gives: \[ 2I = \int_{0}^{\frac{\pi}{2}} \left( \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} + \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} \right) dx. \] 3. **Simplifying the integrand**: The integrand simplifies as follows: \[ \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} + \frac{\sqrt{\cos x}}{\sqrt{\sin x} + \sqrt{\cos x}} = \frac{\sqrt{\sin x} + \sqrt{\cos x}}{\sqrt{\sin x} + \sqrt{\cos x}} = 1. \] Thus, we have: \[ 2I = \int_{0}^{\frac{\pi}{2}} 1 \, dx. \] 4. **Calculating the integral**: The integral of 1 from 0 to \( \frac{\pi}{2} \) is simply: \[ \int_{0}^{\frac{\pi}{2}} 1 \, dx = \left[ x \right]_{0}^{\frac{\pi}{2}} = \frac{\pi}{2} - 0 = \frac{\pi}{2}. \] 5. **Solving for \( I \)**: Now we can solve for \( I \): \[ 2I = \frac{\pi}{2} \implies I = \frac{\pi}{4}. \] Thus, the value of the integral is: \[ \int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} \, dx = \frac{\pi}{4}. \] **Final Answer**: \[ \frac{\pi}{4}. \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|374 Videos
  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos

Similar Questions

Explore conceptually related problems

The value of int_(0)^( pi/2)(sqrt(cos x))/(sqrt(sin x)+sqrt(cos x))dx

int_(0)^( pi/2)sqrt(1-sin x)dx

Prove that : int_(0)^(pi//2) (sqrt(cos x))/(sqrt(sin x+ sqrt(cos x)))dx=(pi)/(4)

int_(0)^( pi)sqrt(1+sin x)dx

int_(0)^(pi//2)((pi)/(4)-x)/(sqrt(sin x)+ sqrt(cos x))dx=

int_(0)^(pi//6) sqrt(1-sin 2x) dx

int(sqrt(sin x)+sqrt(cos x))^(-1)dx=

int_(0)^(pi)(cos x)/(1+sqrt(sin x))dx=

int_(0)^( pi//2)sqrt((1-sin2x)/(1+sin2x))dx

int_(0)^(pi//2) sqrt(cos x) sin ^(3) x" "dx=