Home
Class 12
MATHS
int(0) ^(pi//2) (cos^(2) x)/(sin x + cos...

`int_(0) ^(pi//2) (cos^(2) x)/(sin x + cos x ) dx = `

A

`1/(2sqrt(2)) log ((sqrt(2)-1)/(sqrt(2)+1))`

B

`1/(2sqrt(2)) log ((sqrt(2)+1)/(sqrt(2)-1))`

C

`1/(sqrt(2)) log ((sqrt(2)-1)/(sqrt(2)+1))`

D

`1/(sqrt(2)) log ((sqrt(2)+1)/(sqrt(2)-1))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\cos^2 x}{\sin x + \cos x} \, dx, \] we can use the property of definite integrals: \[ \int_{0}^{a} f(x) \, dx = \int_{0}^{a} f(a - x) \, dx. \] ### Step 1: Apply the property of definite integrals We will substitute \(x\) with \(\frac{\pi}{2} - x\): \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\cos^2\left(\frac{\pi}{2} - x\right)}{\sin\left(\frac{\pi}{2} - x\right) + \cos\left(\frac{\pi}{2} - x\right)} \, dx. \] Using the trigonometric identities \(\cos\left(\frac{\pi}{2} - x\right) = \sin x\) and \(\sin\left(\frac{\pi}{2} - x\right) = \cos x\), we can rewrite the integral as: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\sin^2 x}{\cos x + \sin x} \, dx. \] ### Step 2: Combine the two integrals Now we have two expressions for \(I\): \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\cos^2 x}{\sin x + \cos x} \, dx, \] \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\sin^2 x}{\sin x + \cos x} \, dx. \] Adding these two equations gives: \[ 2I = \int_{0}^{\frac{\pi}{2}} \frac{\cos^2 x + \sin^2 x}{\sin x + \cos x} \, dx. \] Since \(\cos^2 x + \sin^2 x = 1\), we can simplify this to: \[ 2I = \int_{0}^{\frac{\pi}{2}} \frac{1}{\sin x + \cos x} \, dx. \] ### Step 3: Solve the integral Now we need to evaluate: \[ I = \frac{1}{2} \int_{0}^{\frac{\pi}{2}} \frac{1}{\sin x + \cos x} \, dx. \] To evaluate this integral, we can multiply the numerator and denominator by \(\sqrt{2}\): \[ \int_{0}^{\frac{\pi}{2}} \frac{1}{\sin x + \cos x} \, dx = \int_{0}^{\frac{\pi}{2}} \frac{\sqrt{2}}{\sqrt{2}(\sin x + \cos x)} \, dx. \] Now, we can rewrite \(\sin x + \cos x\) as: \[ \sin x + \cos x = \sqrt{2} \left(\sin x \cdot \frac{1}{\sqrt{2}} + \cos x \cdot \frac{1}{\sqrt{2}}\right) = \sqrt{2} \sin\left(x + \frac{\pi}{4}\right). \] Thus, we have: \[ \int_{0}^{\frac{\pi}{2}} \frac{1}{\sin x + \cos x} \, dx = \int_{0}^{\frac{\pi}{2}} \frac{1}{\sqrt{2} \sin\left(x + \frac{\pi}{4}\right)} \, dx. \] ### Step 4: Evaluate the integral This integral can be solved using the substitution \(u = x + \frac{\pi}{4}\), which gives: \[ du = dx \quad \text{and when } x = 0, u = \frac{\pi}{4}, \text{ and when } x = \frac{\pi}{2}, u = \frac{3\pi}{4}. \] Thus, we have: \[ \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{1}{\sqrt{2} \sin u} \, du = \frac{1}{\sqrt{2}} \left[-\log(\csc u + \cot u)\right]_{\frac{\pi}{4}}^{\frac{3\pi}{4}}. \] Evaluating this gives us: \[ \frac{1}{\sqrt{2}} \left[-\log(\sqrt{2} + 1) + \log(\sqrt{2} - 1)\right]. \] ### Final Result Thus, \[ I = \frac{1}{2} \cdot \frac{1}{\sqrt{2}} \left[-\log(\sqrt{2} + 1) + \log(\sqrt{2} - 1)\right]. \] This simplifies to: \[ I = \frac{1}{2\sqrt{2}} \log\left(\frac{\sqrt{2} - 1}{\sqrt{2} + 1}\right). \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|374 Videos
  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2) (cos x ) / ((sin x + cos x)^(2) )dx =

int_(0)^(pi//2) (sinx )/(sin x + cos x ) dx=

Evaluate int_(0)^((pi)/(2))(cos^(2)x)/(2+sin x+cos x)dx

int_ (0) ^ ((pi) / (2)) (sin x) / (sin x + cos x) dx = int_ (0) ^ ((pi) / (2)) (cos x) / (sin x + cos x) dx = int_ (0) ^ ((pi) / (2)) (dx) / (1 + cot x) = int_ (0) ^ ((pi) / (2)) (dx) / ( 1 + time x) = (pi) / (4)

int_(0)^(pi//2)(sin x - cos x)/(1-sin x cos x)dx=