Home
Class 12
MATHS
int(0)^(pi//2) (sin x) / ((sinx + cosx)^...

`int_(0)^(pi//2) (sin x) / ((sinx + cosx)^(3) ) dx =`

A

`1/4`

B

`(-1)/4`

C

`1/2`

D

`(-1)/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_0^{\frac{\pi}{2}} \frac{\sin x}{(\sin x + \cos x)^3} \, dx, \] we can use the property of definite integrals. This property states that: \[ \int_0^a f(x) \, dx = \int_0^a f(a - x) \, dx. \] ### Step 1: Apply the property of definite integrals Let's apply this property to our integral: \[ I = \int_0^{\frac{\pi}{2}} \frac{\sin x}{(\sin x + \cos x)^3} \, dx = \int_0^{\frac{\pi}{2}} \frac{\sin\left(\frac{\pi}{2} - x\right)}{\left(\sin\left(\frac{\pi}{2} - x\right) + \cos\left(\frac{\pi}{2} - x\right)\right)^3} \, dx. \] Since \(\sin\left(\frac{\pi}{2} - x\right) = \cos x\) and \(\cos\left(\frac{\pi}{2} - x\right) = \sin x\), we can rewrite the integral: \[ I = \int_0^{\frac{\pi}{2}} \frac{\cos x}{(\cos x + \sin x)^3} \, dx. \] ### Step 2: Combine the two integrals Now we have two expressions for \(I\): 1. \(I = \int_0^{\frac{\pi}{2}} \frac{\sin x}{(\sin x + \cos x)^3} \, dx\) 2. \(I = \int_0^{\frac{\pi}{2}} \frac{\cos x}{(\sin x + \cos x)^3} \, dx\) Adding these two equations gives: \[ 2I = \int_0^{\frac{\pi}{2}} \left( \frac{\sin x + \cos x}{(\sin x + \cos x)^3} \right) \, dx = \int_0^{\frac{\pi}{2}} \frac{1}{(\sin x + \cos x)^2} \, dx. \] ### Step 3: Simplify the integral Now we need to compute: \[ I = \frac{1}{2} \int_0^{\frac{\pi}{2}} \frac{1}{(\sin x + \cos x)^2} \, dx. \] ### Step 4: Change of variable Let \(u = \tan x\), then \(du = \sec^2 x \, dx\) and \(\sin x = \frac{u}{\sqrt{1 + u^2}}\), \(\cos x = \frac{1}{\sqrt{1 + u^2}}\). The limits change from \(0\) to \(\infty\) as \(x\) goes from \(0\) to \(\frac{\pi}{2}\). The integral becomes: \[ \int_0^{\infty} \frac{1}{\left(\frac{u + 1}{\sqrt{1 + u^2}}\right)^2} \cdot \frac{1}{1 + u^2} \, du. \] This simplifies to: \[ \int_0^{\infty} \frac{(1 + u^2)}{(u + 1)^2} \, du. \] ### Step 5: Evaluate the integral This integral can be evaluated using standard techniques (partial fractions or residue theorem). After evaluating, we find: \[ \int_0^{\infty} \frac{(1 + u^2)}{(u + 1)^2} \, du = 1. \] ### Step 6: Final result Thus, we have: \[ 2I = 1 \implies I = \frac{1}{2}. \] So the value of the integral is: \[ \int_0^{\frac{\pi}{2}} \frac{\sin x}{(\sin x + \cos x)^3} \, dx = \frac{1}{2}. \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|374 Videos
  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2) (sin x) / ((sinx + cosx)^(2) ) dx =

int_(0)^(pi//2)(sinx)/((sinx+cosx))dx=?

int_(0)^(pi//2) (sinx )/(sin x + cos x ) dx=

Evaluate the following : int_(0)^(pi//2)(sinx)/(sinx+cosx)dx

int_(0)^(pi//2) (cosx)/((4+sin x)(3+sin x) ) dx =

int_(0)^( pi/2)(cosx)/(1+sinx)dx

int_(0)^(pi//2)(cosx)/((sinx+cosx))dx=(pi)/(4)

int_(0)^(pi//2)(x)/(sinx+cosx)dx .

int_(0)^(pi//2)(dx)/((cosx+2sinx))