Home
Class 12
MATHS
If int(-1) ^(4) f(x) dx=4and int(2)^(4) ...

If `int_(-1) ^(4) f(x) dx=4and int_(2)^(4) (3-f(x))dx=7,` then
`int_(-1) ^(2) f(x) dx=`

A

`-2`

B

3

C

4

D

5

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the integral \(\int_{-1}^{2} f(x) \, dx\) given the following information: 1. \(\int_{-1}^{4} f(x) \, dx = 4\) 2. \(\int_{2}^{4} (3 - f(x)) \, dx = 7\) Let's break down the steps to find \(\int_{-1}^{2} f(x) \, dx\). ### Step 1: Evaluate the second integral We start with the second integral: \[ \int_{2}^{4} (3 - f(x)) \, dx = 7 \] This can be split into two separate integrals: \[ \int_{2}^{4} 3 \, dx - \int_{2}^{4} f(x) \, dx = 7 \] ### Step 2: Calculate \(\int_{2}^{4} 3 \, dx\) Now, we calculate \(\int_{2}^{4} 3 \, dx\): \[ \int_{2}^{4} 3 \, dx = 3 \cdot (4 - 2) = 3 \cdot 2 = 6 \] ### Step 3: Substitute back into the equation Substituting this value back into our equation from Step 1 gives: \[ 6 - \int_{2}^{4} f(x) \, dx = 7 \] ### Step 4: Solve for \(\int_{2}^{4} f(x) \, dx\) Rearranging the equation to solve for \(\int_{2}^{4} f(x) \, dx\): \[ -\int_{2}^{4} f(x) \, dx = 7 - 6 \] \[ -\int_{2}^{4} f(x) \, dx = 1 \] \[ \int_{2}^{4} f(x) \, dx = -1 \] ### Step 5: Use the first integral Now, we have: \[ \int_{-1}^{4} f(x) \, dx = 4 \] We can express this integral as: \[ \int_{-1}^{4} f(x) \, dx = \int_{-1}^{2} f(x) \, dx + \int_{2}^{4} f(x) \, dx \] ### Step 6: Substitute known values Substituting the known value of \(\int_{2}^{4} f(x) \, dx\): \[ 4 = \int_{-1}^{2} f(x) \, dx + (-1) \] ### Step 7: Solve for \(\int_{-1}^{2} f(x) \, dx\) Now we solve for \(\int_{-1}^{2} f(x) \, dx\): \[ \int_{-1}^{2} f(x) \, dx = 4 + 1 = 5 \] ### Final Answer Thus, the value of \(\int_{-1}^{2} f(x) \, dx\) is: \[ \int_{-1}^{2} f(x) \, dx = 5 \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|374 Videos
  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos

Similar Questions

Explore conceptually related problems

If int_(-1)^(4)f(x)dx=4 and int_(2)^(4)[3-f(x)]dx=7 , then int_(2)^(-1)f(x)dx=

If int_(-1)^(4) f(x)=4 and int_(2)^(7) (3-f(x))dx=7 , then the value of int_(2)^(-1) f(x)dx , is

Evaluate: int_(-1)^(4)f(x)dx=4 and int_(2)^(4)(3-f(x))dx=7 then find the value of int_(2)^(-1)f(x)dx

If int_(-2)^(5) f(x) dx = 4 and int_(0)^(5) {1+f(x)}dx = 7 , then what is int_(-2)^(0) f(x) dx equal to ?

If int_(-3)^(2)f(x)dx=2 and int_(2)^(5)[5+f(x)]dx=9 , then : int_(5)^(-3)f(x)dx=

If int_(-2)^(0) f (x) dx =k, then int_(-2)^(0) |f(x)|dx is

If f(a-x)=f(x) and int_(0)^(a//2)f(x)dx=p , then : int_(0)^(a)f(x)dx=

int_(0)^(a)f(2a-x)dx=m and int_(0)^(a)f(x)dx=n then int_(0)^(2a)f(x)dx is equal to