A
B
C
D
Text Solution
Verified by Experts
The correct Answer is:
Topper's Solved these Questions
Similar Questions
Explore conceptually related problems
NIKITA PUBLICATION-DEFINITE INTEGRAL-MULTIPLE CHOICE QUESTIONS
- int- 1^1|x|dx=?
Text Solution
|
- int(0)^(3) abs(x-2) dx=
Text Solution
|
- int(0)^(3) abs(5x-3) dx=
Text Solution
|
- int(-2)^(2) abs(1-x^(2)) dx=
Text Solution
|
- int(0)^(pi//2) abs(sin(x-pi/4)) dx=
Text Solution
|
- int(0)^(pi//2) abs(sinx-cosx) dx=
Text Solution
|
- int(0)^(2pi)(sinx+ abs(sinx)) dx =
Text Solution
|
- The value of the integral overset(e )underset(1//e)int |logx|dx, is
Text Solution
|
- int- 1^1e^(|x|) dx
Text Solution
|
- The integral int0^pisqrt(1+4sin^2x/2-4sinx/2dx) equal (1) pi-4 (2)...
Text Solution
|
- int(0) ^(3) [x] dx= where [x] is greatest integer function
Text Solution
|
- int(0)^(pi)x sin^(2)x dx=
Text Solution
|
- Evaluate the following : int(0)^(pi)x sin^(3)x dx
Text Solution
|
- int(0)^( pi/2)sin^(2)x cos x dx
Text Solution
|
- int0^pix/(a^2cos^2x+b^2sin^2x)dx
Text Solution
|
- Evaluate the following : int(0)^(pi)(x tanx)/(secx "cosec x")dx
Text Solution
|
- int(0)^(pi)(x sinx)/((1+sinx))dx=pi((pi)/(2)-1)
Text Solution
|
- Prove that int(0)^(pi)(xtanx)/((secx+tanx))dx=pi((pi)/(2)-1).
Text Solution
|
- Evaluate the following : int(0)^(pi)(x tan x)/(secx+cos x)dx
Text Solution
|
- int(0)^(pi)log(1+cosx)dx=-pi(log2)
Text Solution
|