Home
Class 12
MATHS
int(0)^(pi//2) abs(sin(x-pi/4)) dx=...

`int_(0)^(pi//2) abs(sin(x-pi/4)) dx=`

A

`2+sqrt(2)`

B

`2-sqrt(2)`

C

`-2+sqrt(2)`

D

`-2-sqrt(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{0}^{\frac{\pi}{2}} |\sin(x - \frac{\pi}{4})| \, dx \), we will first analyze the expression inside the absolute value. ### Step 1: Determine where the expression changes sign The expression \( \sin(x - \frac{\pi}{4}) \) will change sign at the point where \( x - \frac{\pi}{4} = 0 \), which gives us \( x = \frac{\pi}{4} \). ### Step 2: Break the integral into two parts We will split the integral at \( x = \frac{\pi}{4} \): \[ \int_{0}^{\frac{\pi}{2}} |\sin(x - \frac{\pi}{4})| \, dx = \int_{0}^{\frac{\pi}{4}} -\sin(x - \frac{\pi}{4}) \, dx + \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \sin(x - \frac{\pi}{4}) \, dx \] ### Step 3: Evaluate the first integral For \( x \) in the interval \( [0, \frac{\pi}{4}] \), \( \sin(x - \frac{\pi}{4}) \) is negative, so we have: \[ \int_{0}^{\frac{\pi}{4}} -\sin(x - \frac{\pi}{4}) \, dx = -\int_{0}^{\frac{\pi}{4}} \sin(x - \frac{\pi}{4}) \, dx \] Using the substitution \( u = x - \frac{\pi}{4} \), we have \( du = dx \) and the limits change from \( x = 0 \) to \( u = -\frac{\pi}{4} \) and from \( x = \frac{\pi}{4} \) to \( u = 0 \): \[ = -\int_{-\frac{\pi}{4}}^{0} \sin(u) \, du = -[-\cos(u)]_{-\frac{\pi}{4}}^{0} = -[-\cos(0) + \cos(-\frac{\pi}{4})] = -[-1 + \frac{1}{\sqrt{2}}] = 1 - \frac{1}{\sqrt{2}} \] ### Step 4: Evaluate the second integral For \( x \) in the interval \( [\frac{\pi}{4}, \frac{\pi}{2}] \), \( \sin(x - \frac{\pi}{4}) \) is positive, so we have: \[ \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \sin(x - \frac{\pi}{4}) \, dx \] Using the same substitution \( u = x - \frac{\pi}{4} \), the limits change from \( x = \frac{\pi}{4} \) to \( u = 0 \) and from \( x = \frac{\pi}{2} \) to \( u = \frac{\pi}{4} \): \[ = \int_{0}^{\frac{\pi}{4}} \sin(u) \, du = [-\cos(u)]_{0}^{\frac{\pi}{4}} = -\cos(\frac{\pi}{4}) + \cos(0) = -\frac{1}{\sqrt{2}} + 1 = 1 - \frac{1}{\sqrt{2}} \] ### Step 5: Combine the results Now we can combine both parts: \[ \int_{0}^{\frac{\pi}{2}} |\sin(x - \frac{\pi}{4})| \, dx = \left(1 - \frac{1}{\sqrt{2}}\right) + \left(1 - \frac{1}{\sqrt{2}}\right) = 2\left(1 - \frac{1}{\sqrt{2}}\right) \] ### Final Result The final result of the integral is: \[ \int_{0}^{\frac{\pi}{2}} |\sin(x - \frac{\pi}{4})| \, dx = 2\left(1 - \frac{1}{\sqrt{2}}\right) \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|374 Videos
  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos

Similar Questions

Explore conceptually related problems

int_(0)^( pi/2)(sin x)*dx

int_(0)^(pi//2) sin ^(4) x dx

int_(0)^(pi//2) sin^(4) x " " dx =

int_(0)^(pi//2)sin^(4)xcos^(5)x dx=

int_(0)^( pi/4)sin|x|dx

int_(0)^(pi//4)sin^(2)x dx=

If int_(0)^(pi//2)sin^(4)x cos^(2)x dx=(pi)/(32) , then int_(0)^(pi//2)sin^(2)x cos^(4)x dx=

int_(0)^(pi//4) sin ^(2) x dx

The value of the integral int_(0)^(pi//4) sin^(-4)x dx , is