Home
Class 12
MATHS
Prove that int(0)^(pi)(xtanx)/((secx+tan...

Prove that `int_(0)^(pi)(xtanx)/((secx+tanx))dx=pi((pi)/(2)-1)`.

A

`pi/2(pi-2)`

B

`pi/4(pi-2)`

C

`pi/2(pi-1)`

D

`pi/4(pi-1)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|374 Videos
  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2)(tanx)/((1+tanx))dx=?

int_(0)^(pi)(x sinx)/((1+sinx))dx=pi((pi)/(2)-1)

int_(0)^(pi)(x tanx)/((secx+cosx))dx=(pi^(2))/(4)

int_(0)^(pi)(x tanx)/(secx+cosx)dx is

int_(0)^(pi)(x tanx)/((secxcosecx))dx=(pi^(2))/(4)

int_(0)^(pi/3)(x)/(1+secx)dx

Evaluate: int_0^pi(xtanx)/(s e c x+tanx)dx

int_(0)^(pi//2)(dx)/((1+sqrt(tanx)))=(pi)/(4)

int_(0)^(pi//2)(1)/((1+tanx))dx=?

Prove that: int_(0)^( pi)(x)/(1-cos alpha sin x)dx=(pi(pi-alpha))/(sin alpha)