Home
Class 12
MATHS
int(0)^(pi)log(1+cosx)dx=-pi(log2)...

`int_(0)^(pi)log(1+cosx)dx=-pi(log2)`

A

`-pi log 2`

B

`pi log 2`

C

`pi/2 log 2`

D

`(-pi)/2 log 2`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|374 Videos
  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos

Similar Questions

Explore conceptually related problems

int_(0)^( pi)log(1+cos x)dx

If int_(0)^((pi)/2)log(cosx)dx=-(pi)/2log2 , then int_(0)^((pi)/2)log(cosecx)dx=

int_(0)^((pi)/(2))log(cos x)dx=

If int_(0)^(pi//2) log(cosx) dx=pi/2 log (1/2), then int_(0) ^(pi//2) log (sec x ) dx =

Prove that int_(0)^(pi//2)log (sinx)dx=int_(0)^(pi//2) log (cosx)dx=-(pi)/(2) log 2 .

int_(0)^(pi//2)log(tanx+cotx)dx=pi(log2)

int_(0)^(pi)log sin^(2)x dx=

int_(0)^(pi//2) log (cotx ) dx=

int_(0)^(pi) x log sinx\ dx