Home
Class 12
MATHS
Prove that int(0)^(pi//2)log (sinx)dx=in...

Prove that `int_(0)^(pi//2)log (sinx)dx=int_(0)^(pi//2) log (cosx)dx=-(pi)/(2) log 2`.

A

`pi/4log2`

B

`(-pi)/4log2`

C

`pi/2log2`

D

`(-pi)/2 log 2`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|374 Videos
  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos

Similar Questions

Explore conceptually related problems

Prove that: int_(0)^(pi//2) log (sin x) dx =int_(0)^(pi//2) log (cos x) dx =(-pi)/(2) log 2

int_(0)^(pi//2) log (cotx ) dx=

int_(0)^(pi//2)log (sec x) dx=

int_(0)^((pi)/(2))log(cos x)dx=

int_(0)^((pi)/(2))log(sin2x)dx

int_(0)^((pi)/(2))log(sin x)dx

Prove that: int_0^(pi//2)logsinx\ dx=\ int_0^(pi//2)logcosx\ dx=-pi/2log2

int_(0)^(pi)log sin^(2)x dx=

int_(0)^(pi) x log sinx\ dx

int_(0)^(pi//2) log (tan x ) dx=