Home
Class 12
MATHS
int(0)^(pi//2)log (sec x) dx=...

`int_(0)^(pi//2)log (sec x) dx=`

A

`(-pi)/2log2`

B

`pi/2 log 2`

C

`(-pi)/4 log 2`

D

`pi/4log2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\frac{\pi}{2}} \log(\sec x) \, dx \), we can follow these steps: ### Step 1: Rewrite the integral We know that \( \sec x = \frac{1}{\cos x} \), so we can rewrite the logarithm: \[ I = \int_{0}^{\frac{\pi}{2}} \log(\sec x) \, dx = \int_{0}^{\frac{\pi}{2}} \log\left(\frac{1}{\cos x}\right) \, dx = \int_{0}^{\frac{\pi}{2}} -\log(\cos x) \, dx \] Thus, we have: \[ I = -\int_{0}^{\frac{\pi}{2}} \log(\cos x) \, dx \] ### Step 2: Use the property of integrals Using the property of integrals, we can express \( I \) in terms of another integral: \[ I = -\int_{0}^{\frac{\pi}{2}} \log(\cos x) \, dx \] Now, we can also express this integral using the substitution \( x = \frac{\pi}{2} - t \): \[ \int_{0}^{\frac{\pi}{2}} \log(\cos x) \, dx = \int_{0}^{\frac{\pi}{2}} \log(\sin t) \, dt \] Thus, we have: \[ I = -\int_{0}^{\frac{\pi}{2}} \log(\sin x) \, dx \] ### Step 3: Combine the integrals Now we can add both expressions for \( I \): \[ 2I = -\int_{0}^{\frac{\pi}{2}} \log(\cos x) \, dx - \int_{0}^{\frac{\pi}{2}} \log(\sin x) \, dx \] This simplifies to: \[ 2I = -\int_{0}^{\frac{\pi}{2}} \left( \log(\sin x) + \log(\cos x) \right) \, dx \] Using the property of logarithms, we can combine the logs: \[ \log(\sin x) + \log(\cos x) = \log(\sin x \cos x) \] Thus: \[ 2I = -\int_{0}^{\frac{\pi}{2}} \log(\sin x \cos x) \, dx \] ### Step 4: Simplify the integral Using the identity \( \sin x \cos x = \frac{1}{2} \sin(2x) \): \[ 2I = -\int_{0}^{\frac{\pi}{2}} \log\left(\frac{1}{2} \sin(2x)\right) \, dx \] This can be split into two integrals: \[ 2I = -\int_{0}^{\frac{\pi}{2}} \log\left(\frac{1}{2}\right) \, dx - \int_{0}^{\frac{\pi}{2}} \log(\sin(2x)) \, dx \] Calculating the first integral: \[ -\int_{0}^{\frac{\pi}{2}} \log\left(\frac{1}{2}\right) \, dx = -\frac{\pi}{2} \log\left(\frac{1}{2}\right) = \frac{\pi}{2} \log(2) \] ### Step 5: Change of variables for the second integral For the second integral, let \( u = 2x \), then \( du = 2dx \) or \( dx = \frac{du}{2} \). The limits change from \( 0 \) to \( \pi \): \[ -\int_{0}^{\frac{\pi}{2}} \log(\sin(2x)) \, dx = -\frac{1}{2} \int_{0}^{\pi} \log(\sin u) \, du \] We know that: \[ \int_{0}^{\pi} \log(\sin u) \, du = -\pi \log(2) \] Thus: \[ -\frac{1}{2} \int_{0}^{\pi} \log(\sin u) \, du = -\frac{1}{2} (-\pi \log(2)) = \frac{\pi}{2} \log(2) \] ### Step 6: Combine results Putting it all together: \[ 2I = \frac{\pi}{2} \log(2) + \frac{\pi}{2} \log(2) = \pi \log(2) \] Thus: \[ I = \frac{\pi}{2} \log(2) \] ### Final Answer \[ \int_{0}^{\frac{\pi}{2}} \log(\sec x) \, dx = \frac{\pi}{2} \log(2) \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|374 Videos
  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos

Similar Questions

Explore conceptually related problems

Prove that: int_(0)^(pi//2) log (sin x) dx =int_(0)^(pi//2) log (cos x) dx =(-pi)/(2) log 2

int_(0)^(pi//2) log (cotx ) dx=

If int_(0)^((pi)/2)log(cosx)dx=-(pi)/2log2 , then int_(0)^((pi)/2)log(cosecx)dx=

int_(0)^(pi//2) log (tan x ) dx=

Prove that int_(0)^(pi//2)log (sinx)dx=int_(0)^(pi//2) log (cosx)dx=-(pi)/(2) log 2 .

int_(0)^((pi)/(2))log(cos x)dx=

If I_(1)=int_(0)^(pi//2)log (sin x)dx and I_(2)=int_(0)^(pi//2)log (sin 2x)dx , then

The value of int _(0)^(pi//2) log ("cosec "x) dx is

int_(0)^((pi)/(2))log(sin x)dx