Home
Class 12
MATHS
int(0)^(pi//2) log (tan x ) dx=...

`int_(0)^(pi//2) log (tan x ) dx=`

A

0

B

`pi`

C

`pi/2`

D

`pi/4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\frac{\pi}{2}} \log(\tan x) \, dx \), we can use the properties of definite integrals. Here’s the step-by-step solution: ### Step 1: Define the integral Let \[ I = \int_{0}^{\frac{\pi}{2}} \log(\tan x) \, dx \] ### Step 2: Use the property of definite integrals We can use the property of definite integrals which states that: \[ \int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(a + b - x) \, dx \] In our case, \( a = 0 \) and \( b = \frac{\pi}{2} \). Therefore, we have: \[ I = \int_{0}^{\frac{\pi}{2}} \log(\tan(\frac{\pi}{2} - x)) \, dx \] ### Step 3: Simplify the expression Using the identity \( \tan(\frac{\pi}{2} - x) = \cot x \), we can rewrite the integral: \[ I = \int_{0}^{\frac{\pi}{2}} \log(\cot x) \, dx \] ### Step 4: Express \( \log(\cot x) \) We know that: \[ \cot x = \frac{1}{\tan x} \] Thus, \[ \log(\cot x) = \log\left(\frac{1}{\tan x}\right) = -\log(\tan x) \] So we can rewrite \( I \): \[ I = \int_{0}^{\frac{\pi}{2}} -\log(\tan x) \, dx = -I \] ### Step 5: Solve for \( I \) Now, we have: \[ I = -I \] Adding \( I \) to both sides gives: \[ 2I = 0 \] Thus, \[ I = 0 \] ### Conclusion The value of the integral is: \[ \int_{0}^{\frac{\pi}{2}} \log(\tan x) \, dx = 0 \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|374 Videos
  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos

Similar Questions

Explore conceptually related problems

Evaluate (i) int_(0)^(pi//2)(d x)/(1+sqrt(tan x)) (ii) int_(0)^(pi//2) log (tan x ) d x (iii) int_(0)^(pi//4) log (1+tan x ) d x (iv) int_(0)^(pi//2)(sin x- cos x)/(1+ sin x cos x)d x

int_(0)^(pi//2) log (cotx ) dx=

int_(0)^(pi//4) log (1+tan x) dx =?

If int_(0)^(pi//2) log(cosx) dx=pi/2 log (1/2), then int_(0) ^(pi//2) log (sec x ) dx =

Prove that: int_(0)^(pi//2) log (sin x) dx =int_(0)^(pi//2) log (cos x) dx =(-pi)/(2) log 2

int_(0)^(pi//2)log (sec x) dx=

int_0^(pi//2)log(tanx)dx

The value of the integral int _(0)^(pi//2) log | tan x| dx is