Home
Class 12
MATHS
int(0)^(pi//2) log (cotx ) dx=...

`int_(0)^(pi//2) log (cotx ) dx=`

A

`pi/4`

B

`pi/2`

C

0

D

`pi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\frac{\pi}{2}} \log(\cot x) \, dx \), we can utilize the properties of definite integrals. Here’s a step-by-step solution: ### Step 1: Define the Integral Let \[ I = \int_{0}^{\frac{\pi}{2}} \log(\cot x) \, dx \] ### Step 2: Use the Property of Definite Integrals We can use the property of definite integrals that states: \[ \int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(a + b - x) \, dx \] In our case, \( a = 0 \) and \( b = \frac{\pi}{2} \). Thus, we can write: \[ I = \int_{0}^{\frac{\pi}{2}} \log(\cot(\frac{\pi}{2} - x)) \, dx \] ### Step 3: Simplify the Integral Using the trigonometric identity \( \cot(\frac{\pi}{2} - x) = \tan x \), we can rewrite the integral: \[ I = \int_{0}^{\frac{\pi}{2}} \log(\tan x) \, dx \] ### Step 4: Combine the Two Integrals Now we have two expressions for \( I \): 1. \( I = \int_{0}^{\frac{\pi}{2}} \log(\cot x) \, dx \) 2. \( I = \int_{0}^{\frac{\pi}{2}} \log(\tan x) \, dx \) Adding these two equations gives: \[ 2I = \int_{0}^{\frac{\pi}{2}} \log(\cot x) \, dx + \int_{0}^{\frac{\pi}{2}} \log(\tan x) \, dx \] ### Step 5: Use Logarithmic Properties Using the property of logarithms, \( \log(a) + \log(b) = \log(ab) \): \[ 2I = \int_{0}^{\frac{\pi}{2}} \log(\cot x \cdot \tan x) \, dx \] Since \( \cot x \cdot \tan x = 1 \): \[ 2I = \int_{0}^{\frac{\pi}{2}} \log(1) \, dx \] ### Step 6: Evaluate the Integral Since \( \log(1) = 0 \): \[ 2I = \int_{0}^{\frac{\pi}{2}} 0 \, dx = 0 \] ### Step 7: Solve for \( I \) Thus, we have: \[ 2I = 0 \implies I = 0 \] ### Conclusion The value of the integral is: \[ \int_{0}^{\frac{\pi}{2}} \log(\cot x) \, dx = 0 \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|374 Videos
  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2) log (tan x ) dx=

Prove that: int_(0)^(pi//2) log (sin x) dx =int_(0)^(pi//2) log (cos x) dx =(-pi)/(2) log 2

int_(0)^(pi//2)log (sec x) dx=

If int_(0)^(pi//2) log(cosx) dx=pi/2 log (1/2), then int_(0) ^(pi//2) log (sec x ) dx =

Prove that int_(0)^(pi//2)log (sinx)dx=int_(0)^(pi//2) log (cosx)dx=-(pi)/(2) log 2 .

int_(0)^(pi//2)log(tanx+cotx)dx=pi(log2)

If int_(0)^(pi//2) log cos x dx =(pi)/(2)log ((1)/(2)), then int_(0)^(pi//2) log sec x dx =

What is the value of int_(0)^(pi/2) log (tanx) dx ?

int_(0)^((pi)/(2))log(cos x)dx=