Home
Class 12
MATHS
int(0)^(pi//2)log ((1+ sinx)/ (1+ cos x ...

`int_(0)^(pi//2)log ((1+ sinx)/ (1+ cos x )) dx=`

A

0

B

`pi`

C

`pi/2`

D

`pi/4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the definite integral \[ I = \int_{0}^{\frac{\pi}{2}} \log\left(\frac{1 + \sin x}{1 + \cos x}\right) \, dx, \] we will use a property of definite integrals. ### Step 1: Set up the integral Let \[ I = \int_{0}^{\frac{\pi}{2}} \log\left(\frac{1 + \sin x}{1 + \cos x}\right) \, dx. \] ### Step 2: Use the property of definite integrals We can use the property that \[ \int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(a + b - x) \, dx. \] In our case, \( a = 0 \) and \( b = \frac{\pi}{2} \). Therefore, we can rewrite the integral as: \[ I = \int_{0}^{\frac{\pi}{2}} \log\left(\frac{1 + \sin\left(\frac{\pi}{2} - x\right)}{1 + \cos\left(\frac{\pi}{2} - x\right)}\right) \, dx. \] ### Step 3: Simplify the expression Using the identities \( \sin\left(\frac{\pi}{2} - x\right) = \cos x \) and \( \cos\left(\frac{\pi}{2} - x\right) = \sin x \), we have: \[ I = \int_{0}^{\frac{\pi}{2}} \log\left(\frac{1 + \cos x}{1 + \sin x}\right) \, dx. \] ### Step 4: Combine the two integrals Now we have two expressions for \( I \): 1. \( I = \int_{0}^{\frac{\pi}{2}} \log\left(\frac{1 + \sin x}{1 + \cos x}\right) \, dx \) 2. \( I = \int_{0}^{\frac{\pi}{2}} \log\left(\frac{1 + \cos x}{1 + \sin x}\right) \, dx \) Adding these two equations, we get: \[ 2I = \int_{0}^{\frac{\pi}{2}} \left( \log\left(\frac{1 + \sin x}{1 + \cos x}\right) + \log\left(\frac{1 + \cos x}{1 + \sin x}\right) \right) \, dx. \] ### Step 5: Use logarithmic properties Using the property of logarithms \( \log a + \log b = \log(ab) \): \[ 2I = \int_{0}^{\frac{\pi}{2}} \log\left(\frac{(1 + \sin x)(1 + \cos x)}{(1 + \cos x)(1 + \sin x)}\right) \, dx = \int_{0}^{\frac{\pi}{2}} \log(1) \, dx. \] Since \( \log(1) = 0 \): \[ 2I = \int_{0}^{\frac{\pi}{2}} 0 \, dx = 0. \] ### Step 6: Solve for \( I \) Thus, we have: \[ 2I = 0 \implies I = 0. \] ### Final Answer Therefore, \[ \int_{0}^{\frac{\pi}{2}} \log\left(\frac{1 + \sin x}{1 + \cos x}\right) \, dx = 0. \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|374 Videos
  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2) (sinx )/(sin x + cos x ) dx=

Evaluate the following definite integrals: int_(0)^(pi//2)(1-sinx)/(x+cos x)dx

Evaluate : int_(0)^(pi) (1)/(3 + 2 sinx + cos x ) dx

int_(0)^(pi//2)(sinx)/((1+cos^(2)x))dx

Prove that: int_(0)^(pi//2) (sinx)/(sinx +cos x)d dx =(pi)/(4)

int_(0)^(pi//4) log (1+tan x) dx =?

int_(0)^(pi) x log sinx\ dx