Home
Class 12
MATHS
int(0)^(1) tan ^(-1) ((2x-1)/(1+x-x^(2))...

`int_(0)^(1) tan ^(-1) ((2x-1)/(1+x-x^(2)))dx = `

A

`-1`

B

0

C

1

D

`pm1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the definite integral \[ I = \int_{0}^{1} \tan^{-1} \left( \frac{2x-1}{1+x-x^2} \right) dx, \] we can use the property of definite integrals which states: \[ \int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(a + b - x) \, dx. \] In this case, \( a = 0 \) and \( b = 1 \), so we have: \[ I = \int_{0}^{1} \tan^{-1} \left( \frac{2x-1}{1+x-x^2} \right) dx = \int_{0}^{1} \tan^{-1} \left( \frac{2(1-x)-1}{1+(1-x)-(1-x)^2} \right) dx. \] Now, let's simplify the expression inside the arctangent function: 1. **Calculate \( 2(1-x) - 1 \)**: \[ 2(1-x) - 1 = 2 - 2x - 1 = 1 - 2x. \] 2. **Calculate \( 1 + (1-x) - (1-x)^2 \)**: \[ 1 + (1-x) - (1-x)^2 = 1 + 1 - x - (1 - 2x + x^2) = 2 - x - 1 + 2x - x^2 = 1 + x - x^2. \] Thus, we can rewrite the integral: \[ I = \int_{0}^{1} \tan^{-1} \left( \frac{1 - 2x}{1 + x - x^2} \right) dx. \] Now we have: \[ I = \int_{0}^{1} \tan^{-1} \left( \frac{1 - 2x}{1 + x - x^2} \right) dx. \] Next, we can combine the two expressions for \( I \): \[ 2I = \int_{0}^{1} \tan^{-1} \left( \frac{2x-1}{1+x-x^2} \right) dx + \int_{0}^{1} \tan^{-1} \left( \frac{1-2x}{1+x-x^2} \right) dx. \] Using the property of the arctangent: \[ \tan^{-1}(a) + \tan^{-1}(b) = \tan^{-1} \left( \frac{a + b}{1 - ab} \right), \] we can find: \[ \tan^{-1} \left( \frac{2x-1}{1+x-x^2} \right) + \tan^{-1} \left( \frac{1-2x}{1+x-x^2} \right) = \tan^{-1}(0) = 0. \] Thus, we have: \[ 2I = 0 \implies I = 0. \] Therefore, the value of the definite integral is: \[ \int_{0}^{1} \tan^{-1} \left( \frac{2x-1}{1+x-x^2} \right) dx = 0. \] ### Final Answer: \[ \int_{0}^{1} \tan^{-1} \left( \frac{2x-1}{1+x-x^2} \right) dx = 0. \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|374 Videos
  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following : int_(0)^(1)tan^(-1)((2x)/(1-x^(2)))dx

int_(0)^(1)x tan^(-1)x dx=

int_(0)^(1)tan^(-1)((3x-x^(3))/(1-3x^(2)))dx

int tan^(-1)((2x)/(1-x^(2)))dx

int_(0)^(sqrt(3))tan^(-1)((2x)/(1-x^(2)))dx

int_(0)^(1)tan ^(-1) (x/sqrt(1-x^(2)))dx=

int_(0)^(1)tan (2x-1)dx=

int_(0)^(1)Tan^(-1)((2x)/(1-x^(2)))dx=

Evaluate int_(0)^(1)tan^(-1)((1)/(1-x+x^(2)))dx

int tan^(-1)((1)/(1-x+x^(2)))dx